SPEDIS

"Symmetry preserving discretization of integrable, superintegrable and nonintegrable systems"

 Coordinatore UNIVERSITA DEGLI STUDI ROMA TRE 

 Organization address address: VIA OSTIENSE 161
city: ROMA
postcode: 154

contact info
Titolo: Mr.
Nome: Virgilio
Cognome: Lo Presti
Email: send email
Telefono: +39 0657338081
Fax: 390657000000

 Nazionalità Coordinatore Italy [IT]
 Totale costo 145˙391 €
 EC contributo 145˙391 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-05   -   2015-07-04

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI ROMA TRE

 Organization address address: VIA OSTIENSE 161
city: ROMA
postcode: 154

contact info
Titolo: Mr.
Nome: Virgilio
Cognome: Lo Presti
Email: send email
Telefono: +39 0657338081
Fax: 390657000000

IT (ROMA) coordinator 145˙391.62

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

integrability    fundamental    phenomena    equations    degrees    solved    class    researcher    superintegrable    generalized    algebras    laboratory    point    difference    symmetry    quantum    integrable    motion    form    discrete    preserving    freedom    host    infinite    symmetries    lie    integrals    differential    ones    models   

 Obiettivo del progetto (Objective)

'The aim of this project is to develop and apply efficient mathematical tools for studying quantum and classical phenomena in a discrete setting. The motivation is on one hand that on the fundamental level it seems that space-time is discrete, because of the existence of the Planck length and its role e.g. in quantum gravity. On the other hand, even in a continuous world many important phenomena are discrete, such as phenomena occurring in crystals or in molecular or atomic chains. Thus difference equations may be more fundamental than differential ones. Moreover, differential equations often have to be solved numerically and that means that they have to be discretized, i.e. approximated by a difference system. Our main interest is in models that can be solved exactly because of their symmetry and integrability properties. Of special interest are finite and infinite dimensional integrable and superintegrable models. Integrable systems have as many commuting integrals of motion as degrees of freedom (which may be infinite). Superintegrable systems have more integrals of motion than degrees of freedom and these integrals form interesting non-Abelian algebras. The integrals of motion are related to symmetries of the system. These may be Lie point symmetries but usually they are generalized symmetries and they form more general algebras than Lie ones. Our aim is to study and use Lie symmetries of difference equations and to discretize differential equations preserving their most important properties. These include their Lie point symmetries, generalized symmetries, integrability and superintegrability. In order to do so we plan to host a top-class researcher from a Canadian first class laboratory who is a founder and an expert in the field of symmetry preserving discretization and construction of superintegrable systems. This will strengthen the host institution’s research skills and its relations with the laboratory of the researcher.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EPICENTROMERE (2008)

Determining the Epigenetic Mechanism of Centromere Propagation

Read More  

NANOMAR (2012)

NANOCONTAINER-BASED ACTIVE COATINGS FOR MARITIME APPLICATIONS

Read More  

BEESPATNET (2013)

Mapping Spatial Interaction Networks in Honeybee Colonies

Read More