PBFREEPEROVSKITES

Pb-Free Perovskites for Efficient All-Solid-State Hybrid Solar Cells

 Coordinatore LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

 Organization address address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539

contact info
Titolo: Prof.
Nome: Thomas
Cognome: Bein
Email: send email
Telefono: +49 89218077623
Fax: +49 89218077622

 Nazionalità Coordinatore Germany [DE]
 Totale costo 161˙968 €
 EC contributo 161˙968 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2015
 Periodo (anno-mese-giorno) 2015-02-01   -   2017-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN

 Organization address address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539

contact info
Titolo: Prof.
Nome: Thomas
Cognome: Bein
Email: send email
Telefono: +49 89218077623
Fax: +49 89218077622

DE (MUENCHEN) coordinator 161˙968.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

toxic    conversion    industry    solution    energy    solar    serious    solvents    commercial    perovskite    expertise    metal   

 Obiettivo del progetto (Objective)

'Organo-lead halide perovskite absorbers offer an extremely promising solution to solar energy conversion, in line with the European Union’s 2020 renewable energy targets. This family of materials can be processed from solution utilizing common techniques and equipment developed by the printing industry, achieving power conversion efficiencies on par with the silicon industry. However, the state-of-the-art perovskite developed uses lead as the metal center, which is highly toxic and water soluble. This poses a serious environmental threat and a serious deterrent to the commercial development of this technology. Furthermore, in the usual processing scheme, toxic solvents such as DMF are used, which in combination with the carcinogenic lead salts employed make the production of these devices rather hazardous. This project seeks to address these issues via a novel solvothermal in situ bottom-up crystallization approach to form lead-free perovskite films from non-toxic solvents on a range of different substrates. The project has been designed with the idea of exploiting both the Fellow’s previous expertise in solid-state hybrid solar cell design and device physics and the Host’s expertise in the directed growth of ordered, metal-organic crystals. The expected developed devices will directly serve as commercial prototypes for the industrialization of this technology. The technology developed here will contribute to remove a significant hurdle (removal of a very toxic element) towards the implementation of an environmentally friendly alternative solar technology, thus enhancing European industrial competitiveness.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ADVIOT (2013)

Advanced Methods for Analyzing and Improving the Reliability and Security of Novel Environmental-friendly Wireless Devices for Internet of Things

Read More  

ASR-COMPENZDES (2014)

Active Site Repurposing – computational design of new enzyme functionalities by emulating nature

Read More  

COFUND-CERN-2011 (2012)

COFUNDing of the CERN Fellowship Programme 2011

Read More