COMPLEMENT AND LDL

COMPLEMENT AND ATHEROSCLEROSIS: MOLECULAR MECHANISM OF C1 ACTIVATION BY ENZYMATICALLY MODIFIED LOW-DENSITY LIPOPROTEINS

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jean-Xavier
Cognome: Boucherle
Email: send email
Telefono: -76887895
Fax: -76881145

 Nazionalità Coordinatore France [FR]
 Totale costo 171˙600 €
 EC contributo 171˙600 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-1-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-05-01   -   2010-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jean-Xavier
Cognome: Boucherle
Email: send email
Telefono: -76887895
Fax: -76881145

FR (PARIS) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

molecular    arteries    ldl    modified    chronic    plaque    recognition       inflammation    mechanisms    interaction    atherosclerosis    density    vessels    triggers    activation    molecules    complement    lipoproteins    inflammatory    caused   

 Obiettivo del progetto (Objective)

'Atherosclerosis is considered to be a chronic inflammatory process. Arterial inflammation that precedes plaque development is caused by accumulation of LDL (low density lipoproteins) in the extracellular matrix of the vessels. These LDL particles are modified by a number of processes, including enzymatic degradation, aggregation and oxidation. Complement is also emerging as an important factor in this process: complement activation and formation of the terminal C5b-9 membrane attack complex were shown to occur in atherosclerotic lesions. Recently we have studied the ability of enzymatically modified LDL (E-LDL) to activate C1, the complex that triggers the classical pathway of complement. E-LDL is recognized by the C1q subunit of C1 and triggers direct C1 activation, suggesting that complement activation by E-LDL may play a crucial role in the pathogenesis of atherosclerosis. The objective of this proposal is to characterize the mechanisms involved in the recognition of E-LDL by C1q. We aim at (i) identifying the molecules recognized by C1q; (ii) characterizing the molecular mechanisms involved in this recognition; and (iii) analyzing the mechanisms underlying E-LDL-mediated C1 activation. The project is based on approaches at the molecular and structural levels, and will involve protein biochemistry methods, X-ray crystallography, surface plasmon resonance spectroscopy and functional studies. From a fundamental standpoint, the immediate benefit of this work will be to improve our knowledge of the mechanisms that allow C1q to act as a “sensor” of altered self structures. The biomedical applications of our results could have a considerable impact in the development of new therapeutic strategies against atherosclerosis, because the molecular mapping of the interaction between E-LDL and C1q could help design and synthesize molecules able to interfere with this interaction and thereby to control or prevent complement activation.'

Introduzione (Teaser)

Atherosclerosis, hardening of the arteries, takes place through a chronic inflammatory process. Inflammation of the arteries is caused by a build-up of low-density lipoproteins outside cells in the blood vessels, eventually leading to plaque development.

Altri progetti dello stesso programma (FP7-PEOPLE)

GREY (2013)

"Out of the shadows: developing capacities and capabilities for tackling undeclared work in Bulgaria, Croatia and FYR Macedonia"

Read More  

DISCOVERYFESTIVAL13 (2013)

"Discovery Festival 2013 - Dutch Researchers' Night. Science meets nightlife in an innovative festival with science, cutting edge art and top notch music."

Read More  

MTB VARIATION (2011)

High throughput sequencing to reveal the causes and consequences of Mycobacterium tuberculosis genomic variation

Read More