Opendata, web and dolomites

CO2Polymerisation SIGNED

Conversion of CO2/H2O to Polyethylene through Cascade Electro-reduction–Polymerisation Catalysis

Total Cost €


EC-Contrib. €






 CO2Polymerisation project word cloud

Explore the words cloud of the CO2Polymerisation project. It provides you a very rough idea of what is the project "CO2Polymerisation" about.

transport    constituents    cu    conversions    bifunctional    responsible    copper    feedstocks    achievements    novelty    cascade    reaction    executed    carbon    simultaneous    electrolyte    quantum    direct    energy    co2    packages    hydrogenation    carry    enticing    parallel    separately    demonstrated    occurs    presented    highlighted    indirect    polymerization    microkinetic    electro    constructing    feedstock    settling    water    ziegler    fuels    catalysts    time    converting    catalytic    multiscale    model    metallocene    global    species    polyethylene    conversion    palladium    chemical    pd    binding    software    hydrocarbon    computational    multiphysics    electrochemical    manifold    environmental    catalyst    abundant    dynamics    sequentially    intermediates    million    mass    tones    warming    continuum    experimentally    creative    annually    candidates    c2h4    dioxide    transformation    co    predict    transforms    valuable    catalysis    ethylene   

Project "CO2Polymerisation" data sheet

The following table provides information about the project.


Organization address
address: HAJDRIHOVA 19
postcode: 1000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Slovenia [SI]
 Total cost 162˙040 €
 EC max contribution 162˙040 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KEMIJSKI INSTITUT SI (LJUBLJANA) coordinator 162˙040.00


 Project objective

The global production of polyethylene is over 100 million tones annually. Carbon dioxide is a major cause of global warming but at the same time, it is also an abundant feedstock for hydrocarbon energy fuels. Electrochemical reduction of CO2 into valuable chemical feedstocks such as polyethylene is a highly enticing challenge for simultaneous settling of energy and environmental issues. Currently, CO2 conversion to polyethylene occurs through an indirect two-step process including CO2 catalytic conversions to ethylene (CO2 hydrogenation) and ethylene to polyethylene (ethylene polymerization) using two different catalysts, separately. The novelty of my research is constructing a bifunctional catalyst for CO2 direct conversion to polyethylene through a cascade of electro-reduction–polymerization catalysis in the presence of water. So far, a catalyst that sequentially transforms CO2 into polyethylene has not yet been presented. Manifold catalysts have been demonstrated as potential candidates for CO2 polymerization to polyethylene. The state-of-the-art catalysts as constituents of the proposed bifunctional catalyst would be Copper and Palladium. Cu is responsible for binding *CO intermediates and converting them into C2H4 and Pd is highlighted for ethylene polymerization after Ziegler-type and metallocene-type catalysts. Using computational software packages, I will develop a multiscale and multiphysics model of direct CO2 electrochemical reduction to polyethylene over Cu-Pd bifunctional catalyst to predict the intermediates and products. To achieve this goal, I will carry out a quantum chemical analysis of the reaction pathway, a microkinetic model of the reaction dynamics, and a continuum model for mass transport of all species through the electrolyte. In parallel, computational achievements will be executed experimentally to produce a creative bifunctional catalyst from merging two different catalysts for the CO2 cascade transformation to polyethylene directly.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CO2POLYMERISATION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CO2POLYMERISATION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

BiMetaCat (2019)

Two Are Better Than One: Bimetallic Catalysts for the Conversion of Lignin-Derived Aryl-Ethers

Read More  

OCHRE (2019)

Oat CHRomosome Evolution and drivers enabling widespread terminal intergenomic translocations in polyploid species

Read More  

DIE_CKD (2019)

Deciphering intrarenal communication to unvail mechanisms of chronic kidney diseases

Read More