ANTARCTIC HONO

"Measuring and modelling nitrous acid (HONO) emissions at Dome C, Antarctica"

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jean-Xavier
Cognome: Boucherle
Email: send email
Telefono: -76887895
Fax: -76881145

 Nazionalità Coordinatore France [FR]
 Totale costo 165˙145 €
 EC contributo 165˙145 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-06-01   -   2012-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jean-Xavier
Cognome: Boucherle
Email: send email
Telefono: -76887895
Fax: -76881145

FR (PARIS) coordinator 165˙145.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

oh    oxidation    sulphur    polar    hox    contribution    atmosphere    acid    oxidative    model    measured    dome    budgets    emissions    nox    chemical    atmospheric    antarctica    hono    capacity    nitrous    regions   

 Obiettivo del progetto (Objective)

'The goal of this research project is to understand the nitrous acid (HONO or HNO2) emissions from snow in Antarctica and their contributions to the oxidative capacity of the Antarctic atmosphere. Nitrous acid is an important atmospheric trace gas. Upon photo-dissociation, it forms hydroxyl radical (OH) and nitrogen monoxide (NO). It therefore enters both the HOx (OH HO2) and NOx (NO NO2) budgets which are key budgets when considering the oxidative capacity of the atmosphere. In Antarctica, the oxidative capacity governs for instance the oxidation of marine biogenic sulphur emissions (dimethyl sulphide, DMS) into sulphur aerosols which may cause regional climatic feedbacks via their interactions with solar radiations and cloud microphysics. Oxidation also leads to atmospheric processing and/or post-depositional processing which to date prevent from interpreting – in terms of past atmospheric changes – the nitrate, sulphur, hydrogen peroxide and formaldehyde concentrations recorded in glacial ice. The role of HONO in the HOx and NOx budgets as well as its contribution to the oxidative capacity in Polar Regions is not yet understood. In this project, HONO emissions will be measured in central Antarctica at the French-Italian research station Concordia (75°S, also know as Dome C) using – for the first time – a recently developed Long Path Absorption Photometer (LOPAP). All the parameters influencing HONO emissions will also be measured during the field campaign. These measurements as well as chemical, physical and physico-chemical processes driving HONO emissions and results of previous laboratory experiments will be subsequently gathered in a numerical “box” model. The model being able to reproduce measured HONO emissions, it will be possible to understand the role of HONO in the HOx and NOx budgets and quantify its contribution to the oxidative capacity of the Atmosphere at Dome C and by extension in Polar Regions.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ETHFELLOWS 2 (2015)

ETH Zurich Postdoctoral Fellowship Program 2

Read More  

LANDSCAPEPARTNERS (2010)

The contribution of multi-stakeholder partnerships to sustainable landscape management

Read More  

LASERS FORWARD (2014)

Implementing Crystalline Materials as the Active Medium in Organic Solid State Lasers: Pushing Forward the Limits of Electrically Driven Lasers

Read More