Opendata, web and dolomites

RAGES TERMINATED

Molecular determination of Rif1-Associated Genomic Elements and their function in regulating genome activity and integrity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RAGES project word cloud

Explore the words cloud of the RAGES project. It provides you a very rough idea of what is the project "RAGES" about.

potentially    fascinating    reagents    instability    double    intermediates    repaired    accurately    sites    dsb    repression    function    gene    seek    repair    host    mechanisms    cooperate    inability    disease    metabolised    prevent    examine    alter    paramount    raises    landscape    differentially    proteins    little    usually    cell    me    lines    either    events    transcription    repressive    preliminary    regulates    damage    dependent    mediate    govern    decisions    drive    hypothesis    basis    chromatin    dna    array    possibility    genetic    interestingly    rif1    contexts    regulate    immune    protein    regulator    immunodeficiency    diversity    certain    outcomes    outcome    53bp1    suggests    influences    toxic    reader    manner    genomic    regulatory    mutations    oncogenic    primary    recruited    germline    dsbs    create    misregulation    drives    strand    cellular    carcinogenesis    breaks    opportunity    mediates    critical    counteract    recombination    transcriptional    repertoires    laboratory    molecular   

Project "RAGES" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.well.ox.ac.uk/research/research-groups/chapman-group
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-31   to  2019-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 195˙454.00

Map

 Project objective

DNA double-strand breaks (DSBs) are highly toxic and must usually be accurately repaired to prevent oncogenic mutations. However, DSBs also represent necessary intermediates of recombination events required to create genetic diversity in immune repertoires and the germline. These distinct cellular contexts require that DSBs are differentially metabolised to achieve the required genetic outcome. Thus a complex system has evolved to regulate DSB repair. Rif1 was recently identified as a critical regulator of DSB repair, recruited to chromatin at DSBs by the 53BP1 chromatin reader. However, little is known about how these proteins cooperate to alter the chromatin landscape at DNA damage sites, and how this influences DNA repair decisions. Understanding the molecular basis of these proteins function is paramount, as misregulation at the level of Rif1/53BP1 is known to drive disease: loss of either protein results in primary immunodeficiency, while an inability to counteract Rif1/53BP1-dependent activities during DNA repair is associated with genomic instability that drives carcinogenesis. Interestingly, recent evidence suggests that Rif1 may also mediate gene-repression in certain chromatin contexts. This raises the possibility that the manner by which Rif1 regulates transcriptional control may be similar to its role in DNA repair. In this proposal, I seek to test my hypothesis that Rif1 mediates repressive chromatin states to regulate both transcription and DNA repair outcomes. My preliminary work and an array of unique cell lines and molecular reagents developed by my host laboratory, provide me with a unique and timely opportunity to examine this fascinating protein, and develop a better understanding of potentially common regulatory mechanisms that govern transcription and DNA repair.

 Publications

year authors and title journal last update
List of publications.
2016 Raquel Cuella-Martin, Catarina Oliveira, Helen E. Lockstone, Suzanne Snellenberg, Natalia Grolmusova, J. Ross Chapman
53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms
published pages: 51-64, ISSN: 1097-2765, DOI: 10.1016/j.molcel.2016.08.002
Molecular Cell 64/1 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RAGES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RAGES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

ROSETTA (2020)

Deciphering the Role of aberrant glycOSylation in the rEsponse to Targeted TherApies for breast cancer

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More