Opendata, web and dolomites

MECHANOPROTEASES

Single Molecule Study of Protease Mechano-Specificity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MECHANOPROTEASES project word cloud

Explore the words cloud of the MECHANOPROTEASES project. It provides you a very rough idea of what is the project "MECHANOPROTEASES" about.

experiments    series    proteins    subsequent    elucidate    stretching    degradation    tempting    decades    unapproachable    biology    inhibits    substrate    mechano    protein    specificity    sites    mechanisms    close    speculate    catalytic    mechanical    newly    techniques    chemical    anticipate    reaction    successful    structural    favoring    engineering    bond    single    hydrolysis    molecule    proteasome    dependent    enzymology    clamp    reactions    understand    character    force    permitting    unanticipated    chemistry    forces    nucleophile    occurs    question    discovered    possibilities    relation    proteolysis    geometry    probe    bioinformatics    bound    effect    vivo    enzyme    kinetics    technique    elusive    ultimately    curved    catalysis    vastly    protease    hence    buried    unfolding    previously    proteases    enzymatic    multidisciplinary    dissect    mediated    molecular    offers    biochemistry    assembly    cryptic    exponentially    disulfide    bulk    highlight    mechanobiology    unveil    implying    rate    underlie    innovative    discoveries    relies    spectroscopy   

Project "MECHANOPROTEASES" data sheet

The following table provides information about the project.

Coordinator
KING'S COLLEGE LONDON 

Organization address
address: STRAND
city: LONDON
postcode: WC2R 2LS
website: www.kcl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.kcl.ac.uk/
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2017-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON UK (LONDON) coordinator 195˙454.00

Map

 Project objective

Single-molecule enzymology offers new possibilities to dissect catalytic reactions that were previously unapproachable using biochemistry techniques conducted in the bulk. In particular, recent discoveries conducted at the single molecule level, such as the unanticipated force-mediated protein degradation pathway in the proteasome, highlight the close relation between mechanical forces and proteolysis in vivo. While much has been discovered about protein enzymology in the recent decades, the question of how mechanical force affects enzymatic catalysis remains vastly elusive. The main goal of this proposal is to understand the mechanobiology of proteolysis at the single molecule level. We will use the newly developed force-clamp spectroscopy technique, together with molecular biology engineering techniques and bioinformatics structural analysis to elucidate the molecular mechanisms that underlie protease catalysis under mechanical force. Successful enzymatic activity relies on the enzyme:substrate (E:S) assembly. Upon mechanical unfolding, proteins unveil their buried substrate sites, also called cryptic sites, thus favoring the formation of the E:S complex and ultimately permitting the subsequent chemical reaction. A key feature of recent mechano-chemistry experiments at the single bond level is that the rate at which the reduction of a protein disulfide bond occurs in the presence of a nucleophile is exponentially dependent on the stretching force. Hence, it is tempting to speculate that, in the case of an enzymatic reaction, the catalytic rate will be also force-dependent. We anticipate that the curved geometry of the bound substrate inhibits the E:S assembly at high-forces, implying a novel mechano-specificity character of proteases. Within a multidisciplinary approach, here we propose a series of innovative experiments to directly probe the effect of force on the kinetics of protease hydrolysis.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECHANOPROTEASES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MECHANOPROTEASES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More