Opendata, web and dolomites

MECHANOPROTEASES

Single Molecule Study of Protease Mechano-Specificity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MECHANOPROTEASES project word cloud

Explore the words cloud of the MECHANOPROTEASES project. It provides you a very rough idea of what is the project "MECHANOPROTEASES" about.

technique    hence    innovative    dependent    bond    anticipate    offers    elusive    nucleophile    bioinformatics    mechanical    possibilities    successful    cryptic    subsequent    discoveries    clamp    molecule    sites    proteasome    single    previously    biology    experiments    spectroscopy    proteolysis    mechanobiology    enzyme    newly    reaction    structural    proteases    protein    discovered    kinetics    implying    inhibits    degradation    specificity    understand    techniques    vivo    buried    force    protease    assembly    close    proteins    catalytic    chemical    elucidate    tempting    exponentially    ultimately    unveil    rate    engineering    unanticipated    unapproachable    forces    chemistry    effect    highlight    bulk    biochemistry    enzymology    mediated    mechanisms    speculate    multidisciplinary    bound    dissect    curved    series    catalysis    decades    character    vastly    hydrolysis    favoring    enzymatic    unfolding    relation    mechano    geometry    relies    substrate    question    underlie    molecular    probe    permitting    occurs    stretching    reactions    disulfide   

Project "MECHANOPROTEASES" data sheet

The following table provides information about the project.

Coordinator
KING'S COLLEGE LONDON 

Organization address
address: STRAND
city: LONDON
postcode: WC2R 2LS
website: www.kcl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.kcl.ac.uk/
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2017-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON UK (LONDON) coordinator 195˙454.00

Map

 Project objective

Single-molecule enzymology offers new possibilities to dissect catalytic reactions that were previously unapproachable using biochemistry techniques conducted in the bulk. In particular, recent discoveries conducted at the single molecule level, such as the unanticipated force-mediated protein degradation pathway in the proteasome, highlight the close relation between mechanical forces and proteolysis in vivo. While much has been discovered about protein enzymology in the recent decades, the question of how mechanical force affects enzymatic catalysis remains vastly elusive. The main goal of this proposal is to understand the mechanobiology of proteolysis at the single molecule level. We will use the newly developed force-clamp spectroscopy technique, together with molecular biology engineering techniques and bioinformatics structural analysis to elucidate the molecular mechanisms that underlie protease catalysis under mechanical force. Successful enzymatic activity relies on the enzyme:substrate (E:S) assembly. Upon mechanical unfolding, proteins unveil their buried substrate sites, also called cryptic sites, thus favoring the formation of the E:S complex and ultimately permitting the subsequent chemical reaction. A key feature of recent mechano-chemistry experiments at the single bond level is that the rate at which the reduction of a protein disulfide bond occurs in the presence of a nucleophile is exponentially dependent on the stretching force. Hence, it is tempting to speculate that, in the case of an enzymatic reaction, the catalytic rate will be also force-dependent. We anticipate that the curved geometry of the bound substrate inhibits the E:S assembly at high-forces, implying a novel mechano-specificity character of proteases. Within a multidisciplinary approach, here we propose a series of innovative experiments to directly probe the effect of force on the kinetics of protease hydrolysis.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECHANOPROTEASES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MECHANOPROTEASES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More  

Kidney-Treg (2020)

Characterisation and impact of kidney-resident Tregs in kidney physiology and pathologies

Read More