Opendata, web and dolomites

DLCHHB SIGNED

Artificial Tissue Actuators by the 3D Printing of Responsive Hydrogels

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DLCHHB project word cloud

Explore the words cloud of the DLCHHB project. It provides you a very rough idea of what is the project "DLCHHB" about.

molecular    time    oxford    transfer    breakthrough    polymer    prior    external    muscles    suited    electrical    successful    benefiting    completion    3d    independent    progress    stimuli    progression    perform    materials    santa    functionalised    polymers    synthetic    area    public    ultimately    world    ing    droplet    kingdom    proteins    obtain    inherently    rapid    group    young    dr    back    prepared    exists    barbara    opportunity    record    printing    academic    biology    display    position    hawker    industrial    expertise    hydrogel    lunn    biocompatible    bayley    self    describes    chemo    artificial    drive    university    biophysics    enabled    communication    skills    california    lipid    interdisciplinary    variety    bilayers    spend    union    science    biomaterial    networks    chemistry    prepare    actuation    highest    prof    tissue    ranked    motion    researcher    chemical    acquired    stimulus    track    united    mechanical    institutes    responsive    hydrogels    fellowship    membrane    ideally    supporting   

Project "DLCHHB" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://bayley.chem.ox.ac.uk/
 Total cost 226˙825 €
 EC max contribution 226˙825 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2017-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 226˙825.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

This proposal describes the 3D printing of hydrogel droplet networks to prepare artificial tissue-like materials that demonstrate stimulus-responsive chemo-mechanical actuation. A recent breakthrough by Prof. Bayley’s research group has enabled the 3D printing of self-supporting droplet networks which can be functionalised to allow rapid electrical and molecular communication along a specific path. As a result of this, an opportunity now exists to prepare tissue-like materials that can perform mechanical work in response to external stimuli. By printing biocompatible and responsive polymer hydrogels into droplet networks, artificial muscles will be prepared that display specific and well-defined motion. The resulting technology will be of great importance for a variety of biomaterial applications, with future European Union (EU) industrial growth as well as the public ultimately benefiting from progress in this area.

This proposal is inherently multi- and interdisciplinary, involving aspects of synthetic chemistry, polymer chemistry, materials science, chemical biology and biophysics. The different expertise of Prof. Hawker, University of California, Santa Barbara (hydrogels, responsive polymers and biocompatible materials), and Prof. Bayley, University of Oxford (3D printing of artificial tissue, lipid bilayers and membrane proteins), are ideally suited for the successful completion of the proposed research objectives. Due to his prior experience and track record, the experienced researcher, Dr. Lunn, will be able to effectively drive the progression and dissemination of the proposed research. Ultimately, this project will allow one of the United Kingdom's top young researchers to spend time at one of the highest ranked materials research institutes in the world, and transfer the knowledge back to the EU via the University of Oxford. After the fellowship, Dr. Lunn will use the knowledge and skills acquired to obtain an independent academic position within the EU.

 Publications

year authors and title journal last update
List of publications.
2017 Jia Niu, David J. Lunn, Anusha Pusuluri, Justin I. Yoo, Michelle A. O\'Malley, Samir Mitragotri, H. Tom Soh, Craig J. Hawker
Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization
published pages: 537-545, ISSN: 1755-4330, DOI: 10.1038/nchem.2713
Nature Chemistry 9/6 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DLCHHB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DLCHHB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

Inflapoptosis (2019)

Gasdermin D is a novel effector in the extrinsic apoptosis pathway

Read More  

STOPATT (2020)

Stochastic pattern formation in biochemical systems

Read More