Opendata, web and dolomites

DLCHHB SIGNED

Artificial Tissue Actuators by the 3D Printing of Responsive Hydrogels

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DLCHHB project word cloud

Explore the words cloud of the DLCHHB project. It provides you a very rough idea of what is the project "DLCHHB" about.

suited    chemistry    ing    ranked    proteins    progression    3d    independent    fellowship    polymers    networks    dr    successful    lipid    materials    back    droplet    breakthrough    molecular    biology    display    lunn    area    mechanical    kingdom    motion    hydrogels    researcher    ideally    bayley    time    chemo    university    stimuli    oxford    enabled    spend    synthetic    hydrogel    science    actuation    responsive    tissue    transfer    biocompatible    acquired    world    drive    completion    prepare    record    industrial    benefiting    biophysics    membrane    track    barbara    academic    perform    muscles    interdisciplinary    inherently    electrical    chemical    highest    communication    describes    variety    position    united    prof    polymer    supporting    bilayers    obtain    opportunity    california    santa    self    external    group    biomaterial    young    union    expertise    hawker    stimulus    printing    skills    progress    public    institutes    prior    rapid    prepared    exists    ultimately    functionalised    artificial   

Project "DLCHHB" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://bayley.chem.ox.ac.uk/
 Total cost 226˙825 €
 EC max contribution 226˙825 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2017-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 226˙825.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

This proposal describes the 3D printing of hydrogel droplet networks to prepare artificial tissue-like materials that demonstrate stimulus-responsive chemo-mechanical actuation. A recent breakthrough by Prof. Bayley’s research group has enabled the 3D printing of self-supporting droplet networks which can be functionalised to allow rapid electrical and molecular communication along a specific path. As a result of this, an opportunity now exists to prepare tissue-like materials that can perform mechanical work in response to external stimuli. By printing biocompatible and responsive polymer hydrogels into droplet networks, artificial muscles will be prepared that display specific and well-defined motion. The resulting technology will be of great importance for a variety of biomaterial applications, with future European Union (EU) industrial growth as well as the public ultimately benefiting from progress in this area.

This proposal is inherently multi- and interdisciplinary, involving aspects of synthetic chemistry, polymer chemistry, materials science, chemical biology and biophysics. The different expertise of Prof. Hawker, University of California, Santa Barbara (hydrogels, responsive polymers and biocompatible materials), and Prof. Bayley, University of Oxford (3D printing of artificial tissue, lipid bilayers and membrane proteins), are ideally suited for the successful completion of the proposed research objectives. Due to his prior experience and track record, the experienced researcher, Dr. Lunn, will be able to effectively drive the progression and dissemination of the proposed research. Ultimately, this project will allow one of the United Kingdom's top young researchers to spend time at one of the highest ranked materials research institutes in the world, and transfer the knowledge back to the EU via the University of Oxford. After the fellowship, Dr. Lunn will use the knowledge and skills acquired to obtain an independent academic position within the EU.

 Publications

year authors and title journal last update
List of publications.
2017 Jia Niu, David J. Lunn, Anusha Pusuluri, Justin I. Yoo, Michelle A. O\'Malley, Samir Mitragotri, H. Tom Soh, Craig J. Hawker
Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization
published pages: 537-545, ISSN: 1755-4330, DOI: 10.1038/nchem.2713
Nature Chemistry 9/6 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DLCHHB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DLCHHB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More