Opendata, web and dolomites

DLCHHB SIGNED

Artificial Tissue Actuators by the 3D Printing of Responsive Hydrogels

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DLCHHB project word cloud

Explore the words cloud of the DLCHHB project. It provides you a very rough idea of what is the project "DLCHHB" about.

track    researcher    tissue    communication    expertise    synthetic    rapid    describes    back    actuation    biophysics    prof    completion    ultimately    mechanical    santa    external    breakthrough    position    artificial    chemo    prior    electrical    successful    stimuli    oxford    motion    union    independent    benefiting    kingdom    bayley    fellowship    area    ideally    drive    proteins    interdisciplinary    inherently    stimulus    progress    biology    california    institutes    functionalised    progression    group    opportunity    variety    hawker    printing    transfer    polymer    3d    obtain    public    hydrogels    united    suited    chemistry    ing    droplet    barbara    self    academic    exists    muscles    ranked    skills    chemical    bilayers    materials    acquired    biomaterial    time    prepare    world    enabled    university    display    lipid    biocompatible    responsive    highest    perform    prepared    young    polymers    science    membrane    industrial    networks    molecular    record    dr    hydrogel    supporting    spend    lunn   

Project "DLCHHB" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://bayley.chem.ox.ac.uk/
 Total cost 226˙825 €
 EC max contribution 226˙825 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2017-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 226˙825.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

This proposal describes the 3D printing of hydrogel droplet networks to prepare artificial tissue-like materials that demonstrate stimulus-responsive chemo-mechanical actuation. A recent breakthrough by Prof. Bayley’s research group has enabled the 3D printing of self-supporting droplet networks which can be functionalised to allow rapid electrical and molecular communication along a specific path. As a result of this, an opportunity now exists to prepare tissue-like materials that can perform mechanical work in response to external stimuli. By printing biocompatible and responsive polymer hydrogels into droplet networks, artificial muscles will be prepared that display specific and well-defined motion. The resulting technology will be of great importance for a variety of biomaterial applications, with future European Union (EU) industrial growth as well as the public ultimately benefiting from progress in this area.

This proposal is inherently multi- and interdisciplinary, involving aspects of synthetic chemistry, polymer chemistry, materials science, chemical biology and biophysics. The different expertise of Prof. Hawker, University of California, Santa Barbara (hydrogels, responsive polymers and biocompatible materials), and Prof. Bayley, University of Oxford (3D printing of artificial tissue, lipid bilayers and membrane proteins), are ideally suited for the successful completion of the proposed research objectives. Due to his prior experience and track record, the experienced researcher, Dr. Lunn, will be able to effectively drive the progression and dissemination of the proposed research. Ultimately, this project will allow one of the United Kingdom's top young researchers to spend time at one of the highest ranked materials research institutes in the world, and transfer the knowledge back to the EU via the University of Oxford. After the fellowship, Dr. Lunn will use the knowledge and skills acquired to obtain an independent academic position within the EU.

 Publications

year authors and title journal last update
List of publications.
2017 Jia Niu, David J. Lunn, Anusha Pusuluri, Justin I. Yoo, Michelle A. O\'Malley, Samir Mitragotri, H. Tom Soh, Craig J. Hawker
Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization
published pages: 537-545, ISSN: 1755-4330, DOI: 10.1038/nchem.2713
Nature Chemistry 9/6 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DLCHHB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DLCHHB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More