Opendata, web and dolomites


The neural basis of visual interaction between scenes and objects

Total Cost €


EC-Contrib. €






Project "SEEING FROM CONTEXT" data sheet

The following table provides information about the project.


Organization address
address: VIA CALEPINA 14
city: TRENTO
postcode: 38122

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-06-01   to  2018-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI TRENTO IT (TRENTO) coordinator 180˙277.00


 Project objective

We easily categorize places and objects in a single glance, a computationally complex task presenting a central challenge for vision neuroscience. Considerable evidence points to a division of scene and object processing into two distinct neural pathways, relying on different types of visual cues. However, scenes and objects are also known to strongly interact in visual perception, as seen in contextual effects of background on object perception. At present, the neural mechanisms by which scenes and objects interact remain unknown, leaving a critical gap in our understanding of these two major visual paths. The main goal of this multi-method proposal is to uncover the neural mechanisms of scene-object interactions. I therefore propose three competing theoretical models. A parallel model predicts only stimulus-driven representations of scenes and objects in the visual cortex. In contrast, interactive models predict that representations of scenes and objects in the visual cortex are influenced by one-another. However, whereas a visual-interactive model suggests direct interaction, a feedback model suggests that the interaction is mediated by frontal regions. To test this, I propose a novel psychophysical paradigm of seeing objects from scene context and scenes from object context. Thereby, I will examine how scene and object processing are affected by one-another and identify the potential neural sources of these modulations using fMRI (objective 1). Thereafter, I will use MEG to decode the timeline of these neural processes (objective 2). Establishing a clear neurocognitive model for scene-object interaction would not only advance our understanding of the two central paths of the ventral visual stream, but also significantly contribute to the definition of vision as an interactive system rather than a set of specialized parallel modules. Shifting from localized visual modules to interactive visual processes will broaden my expertise as a cognitive neuroscientist.


year authors and title journal last update
List of publications.
2018 Talia Brandman, Marius V. Peelen
Signposts in the Fog: Objects Facilitate Scene Representations in Left Scene-selective Cortex
published pages: 1-11, ISSN: 0898-929X, DOI: 10.1162/jocn_a_01258
Journal of Cognitive Neuroscience 2019-06-18
2017 Talia Brandman, Marius V. Peelen
Interaction between Scene and Object Processing Revealed by Human fMRI and MEG Decoding
published pages: 7700-7710, ISSN: 0270-6474, DOI: 10.1523/jneurosci.0582-17.2017
The Journal of Neuroscience 37/32 2019-06-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SEEING FROM CONTEXT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SEEING FROM CONTEXT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)


The missing pillar. European social policy and Eurosceptic challenges (SOCIALEU)

Read More  

NeoPur (2019)

New treatments and novel diagnostic tests for neonatal seizures based on purinergic signaling.

Read More  

InProSMod (2021)

Cholinergic and NMDAR-dependent recruitment of Layer 1 Interneuron shapes cortical motor Processing through network States Modulation

Read More