Opendata, web and dolomites

FOLDASYNBIO

Bioinspired Nanostructures by Self-assembly of Amphiphilic Non-peptide Helical Foldamers in Aqueous Environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FOLDASYNBIO project word cloud

Explore the words cloud of the FOLDASYNBIO project. It provides you a very rough idea of what is the project "FOLDASYNBIO" about.

building    construction    he    aqueous    join    rules    assemblies    pioneered    expertise    advantages    mission    techniques    functions    tools    acquired    peptides    patterns    oligomers    structural    laboratory    arrangements    manipulation    nanometer    structure    folded    secondment    chemistry    rewarding    ray    modularity    helical    folding    peptide    biomaterials    urea    host    solution    exist    amphiphilic    self    primary    possess    biomimetic    alternatively    trained    sequence    crystallography    multidisciplinary    protein    biological    assembling    group    precise    endeavor    natural    synthetic    potentially    bode    characterization    france    architectures    synthesis    sophistication    appropriate    combination    oligoamides    foldamer    realization    resides    engineering    foldamers    predictable    milestone    secondary    drug    move    nanostructures    precisely    units    difficulty    morphologies    catalysts    functional    quaternary    prominent   

Project "FOLDASYNBIO" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE BORDEAUX 

Organization address
address: PLACE PEY BERLAND 35
city: BORDEAUX
postcode: 33000
website: www.nouvelle-univ-bordeaux.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2018-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE BORDEAUX FR (BORDEAUX) coordinator 185˙076.00

Map

 Project objective

The design and precise construction of biomimetic self-assembling systems in aqueous solution is a challenging yet potentially highly rewarding endeavor, contributing to the development of new biomaterials, catalysts, drug-delivery systems and tools for the manipulation of biological processes. A high level of sophistication with control over morphologies and functions has been achieved by engineering self-assembling peptide-based building units. Although peptides possess a number of specific advantages including synthetic availability, modularity, one difficulty resides in precisely controlling the rules relating primary sequence and secondary structure. Alternatively, opportunities exist to develop bottom-up approaches using non-natural oligomers also referred to as foldamers, with predictable and well-defined folding patterns. Advances in foldamer chemistry bode well for their use as building units for the precise construction of nanometer scale assemblies and for possible applications. This project will move a step forward towards the realization of this mission, by developing protein-like quaternary arrangements under sequence based control using amphiphilic helical foldamers in aqueous conditions. The applicant has been trained in the synthesis of folded oligoamides and more importantly has acquired a high level of expertise in the design and structural characterization of peptide-based assemblies. He will join and bring his expertise to a host laboratory in France that has pioneered the development of urea-based helical foldamers. Secondment in one established European group with prominent expertise in X-ray crystallography techniques and biological structure determination will provide the appropriate combination of knowledge required for this multidisciplinary study. This approach will be a milestone in the design of foldamer-based quaternary architectures and may lead to new functional nanostructures.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FOLDASYNBIO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FOLDASYNBIO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MetAeAvIm (2019)

The Role of the Metabolism in Mosquito Immunity against Dengue virus in Aedes aegypti

Read More  

PleasDef (2019)

Exploring Women’s Sexual Pleasure Deficit

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More