Opendata, web and dolomites


Inflation in String Theory - Connecting Quantum Gravity with Observations

Total Cost €


EC-Contrib. €






 STRINGFLATION project word cloud

Explore the words cloud of the STRINGFLATION project. It provides you a very rough idea of what is the project "STRINGFLATION" about.

quantitative    temperature    first    energy    dangerous    waves    vacua    discovered    wave    background    time    dark    consistent    multiple    mechanisms    changed    bicep2    mode    power    predictions    drastically    detection    fluctuations    cosmological    co    strength    monodromy    extremely    termed    assistance    observations    fractional    chance    mechanism    excursion    inflationary    sources    unification    constant    primary    corrections    scalar    predicting    string    signal    pending    close    motivate    protect    quantum    grand    prerequisite    corroboration    analyze    gravitational    universe    moduli    science    stabilization    accelerated    purpose    microwave    phases    combination    gives    implies    reported    correspond    candidate    symmetries    small    experiment    context    axion    cosmic    inflation    pi    cmb    cosmology    10    positive    polarization    primordial    supports    gravity    models    acceleration    interplay    testable    expansion    catalog    theory    hence    ranges   

Project "STRINGFLATION" data sheet

The following table provides information about the project.


Organization address
address: NOTKESTRASSE 85
postcode: 22607

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website
 Total cost 1˙854˙750 €
 EC max contribution 1˙854˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-10-01   to  2021-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

This project aims at predicting the energy scale of cosmological inflation and the strength of the inflationary gravitational wave signal from string theory. Observations of the cosmic microwave background (CMB) temperature fluctuations have drastically changed cosmology into quantitative science. The results provide strong evidence for two phases of accelerated expansion in our Universe. The late-time phase of acceleration, termed ’dark energy’, is consistent with an extremely small positive cosmological constant, while the evidence for a very early phase of acceleration increasingly supports cosmological inflation. Very recently, the BICEP2 experiment reported the detection of B-mode polarization in the CMB. Pending future corroboration, this may correspond to a detection of primordial gravitational waves with a fractional power of about 10% of the CMB temperature fluctuations. In the context of inflation this implies an inflationary energy scale close to the scale of Grand Unification, and a large field excursion of the inflationary scalar field. Hence, the inflationary scalar potential needs symmetries to protect it from dangerous quantum corrections. These features strongly motivate the study of high-scale inflation in string theory as a candidate theory of quantum gravity. We will determine the range of predictions for large-field high-scale inflation in string theory driven by the mechanism of axion monodromy, which was co-discovered by the PI. For this purpose, we will establish a catalog of primary sources for large field ranges from axion monodromy in combination with assistance effects from multiple axion fields. We will analyze the generic effects of the interplay between large-field models of inflation in string theory with its necessary prerequisite, moduli stabilization. Finally, we will study the distribution of inflation mechanisms among the many vacua of string theory. In combination, this gives us a first chance to make string theory testable.


year authors and title journal last update
List of publications.
2017 Guido D’Amico, Nemanja Kaloper, Antonio Padilla, David Stefanyszyn, Alexander Westphal, George Zahariade
An étude on global vacuum energy sequester
published pages: , ISSN: 1029-8479, DOI: 10.1007/JHEP09(2017)074
Journal of High Energy Physics 2017/9 2020-01-24
2018 Jakob Moritz, Thomas Van Riet
Racing through the swampland: de Sitter uplift vs. weak gravity
published pages: , ISSN: 1029-8479, DOI: 10.1007/JHEP09(2018)099
Journal of High Energy Physics 2018/9 2020-01-24
2018 Mafalda Dias, Jonathan Frazer, M.C. David Marsh
Seven lessons from manyfield inflation in random potentials
published pages: 036-036, ISSN: 1475-7516, DOI: 10.1088/1475-7516/2018/01/036
Journal of Cosmology and Astroparticle Physics 2018/01 2020-01-24
2017 Francisco Gil Pedro, Alexander Westphal
Nonequilibrium random matrix theory: Transition probabilities
published pages: , ISSN: 2470-0045, DOI: 10.1103/PhysRevE.95.032144
Physical Review E 95/3 2020-01-24
2016 Mafalda Dias, Jonathan Frazer, M. C. David Marsh
Simple Emergent Power Spectra from Complex Inflationary Physics
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.117.141303
Physical Review Letters 117/14 2020-01-24
2018 David Ciupke
Scalar Potential from Higher Derivative N=1 Superspace
published pages: 55, ISSN: , DOI: 10.3204/PUBDB-2016-01898
DESY-16-021 DESY-16-021 2020-01-24
2016 Layne C. Price, Hiranya V. Peiris, Jonathan Frazer, Richard Easther
Designing and testing inflationary models with Bayesian networks
published pages: 049-049, ISSN: 1475-7516, DOI: 10.1088/1475-7516/2016/02/049
Journal of Cosmology and Astroparticle Physics 2016/02 2020-01-24
2016 Mafalda Dias, Jonathan Frazer, David J. Mulryne, David Seery
Numerical evaluation of the bispectrum in multiple field inflation—the transport approach with code
published pages: 033-033, ISSN: 1475-7516, DOI: 10.1088/1475-7516/2016/12/033
Journal of Cosmology and Astroparticle Physics 2016/12 2020-01-24
2018 Selim C. Hotinli, Jonathan Frazer, Andrew H. Jaffe, Joel Meyers, Layne C. Price, Ewan R. M. Tarrant
Effect of reheating on predictions following multiple-field inflation
published pages: , ISSN: 2470-0010, DOI: 10.1103/PhysRevD.97.023511
Physical Review D 97/2 2020-01-24
2016 Arthur Hebecker, Fabrizio Rompineve, Alexander Westphal
Axion monodromy and the weak gravity conjecture
published pages: , ISSN: 1029-8479, DOI: 10.1007/JHEP04(2016)157
Journal of High Energy Physics 2016/4 2020-01-24
2018 Renata Kallosh, Andrei Linde, Diederik Roest, Alexander Westphal, Yusuke Yamada
Fibre inflation and α-attractors
published pages: , ISSN: 1029-8479, DOI: 10.1007/JHEP02(2018)117
Journal of High Energy Physics 2018/2 2020-01-24
2016 Benedict J. Broy, Dries Coone, Diederik Roest
Plateau inflation from random non-minimal coupling
published pages: 036-036, ISSN: 1475-7516, DOI: 10.1088/1475-7516/2016/06/036
Journal of Cosmology and Astroparticle Physics 2016/06 2020-01-24
2016 Benedict J. Broy
Corrections to n s and n t from high scale physics
published pages: , ISSN: 2470-0010, DOI: 10.1103/PhysRevD.94.103508
Physical Review D 94/10 2020-01-24
2018 Liam McAllister, Pedro Schwaller, Geraldine Servant, John Stout, Alexander Westphal
Runaway relaxion monodromy
published pages: , ISSN: 1029-8479, DOI: 10.1007/JHEP02(2018)124
Journal of High Energy Physics 2018/2 2020-01-24
2017 F. G. Pedro, A. Westphal
Inflation with a graceful exit in a random landscape
published pages: , ISSN: 1029-8479, DOI: 10.1007/JHEP03(2017)163
Journal of High Energy Physics 2017/3 2020-01-24
20189 Mafalda Dias, Jonathan Frazer, Ander Retolaza, Marco Scalisi, Alexander Westphal
Pole N-flation
published pages: 30, ISSN: , DOI: 10.3204/PUBDB-2018-01960
DESY-18-063 DESY-18-063 2020-01-24
2016 Arthur Hebecker, Jakob Moritz, Alexander Westphal, Lukas T. Witkowski
Axion monodromy inflation with warped KK-modes
published pages: 328-334, ISSN: 0370-2693, DOI: 10.1016/j.physletb.2016.01.030
Physics Letters B 754 2020-01-24
2018 Jakob Moritz, Ander Retolaza, Alexander Westphal
Toward de Sitter space from ten dimensions
published pages: , ISSN: 2470-0010, DOI: 10.1103/PhysRevD.97.046010
Physical Review D 97/4 2020-01-24
2018 Mafalda Dias, Jonathan Frazer, Ander Retolaza, Alexander Westphal
Primordial Gravitational Waves and the Swampland
published pages: 1800063, ISSN: 0015-8208, DOI: 10.1002/prop.201800063
Fortschritte der Physik 2020-01-24
2018 Mafalda Dias, Jonathan Frazer, Alexander Westphal
Inflation as an Information Bottleneck - A strategy for identifying universality classes and making robust predictions
published pages: , ISSN: , DOI: 10.3204/PUBDB-2018-03982
DESY-18-177 DESY-18-177 2020-01-24
2018 Jakob Moritz, Ander Retolaza, Alexander Westphal
On uplifts by warped anti-D3-branes
published pages: 1800098, ISSN: 0015-8208, DOI: 10.1002/prop.201800098
Fortschritte der Physik 2020-01-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRINGFLATION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRINGFLATION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More