Opendata, web and dolomites

KL2MG-interactions SIGNED

K-theory, L^2-invariants, manifolds, groups and their interactions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 KL2MG-interactions project word cloud

Explore the words cloud of the KL2MG-interactions project. It provides you a very rough idea of what is the project "KL2MG-interactions" about.

topological    ring    theory    structure    representation    hecke    finite    settings    gradient    invariants    aspherical    closed    classifying    approximation    proof    transferred    see    gain    bridges    made    worldwide    towers    connes    algebraic    manifolds    sphere    outstanding    cyclic    transfer    flows    many    individual    reaching    totally    interactions    finitely    profound    groups    mathematics    integrality    lasting    pi    conjectures    rings    homology    torsion    rank    betti    milestone    time    echet    first    baum    door    emerge    automorphism    classes    disconnected    jones    ripe    proofs    prominent    fr    innovative    insights    techniques    metric    intend    conjecture    topology    attack    homotopy    atiyah    relation    certain    progress    striking    period    algebras    situations    geometric    spectrum    farrell    spaces    trigger    concerning    analyze    group       input    waldhausen    starting    point    last    coverings   

Project "KL2MG-interactions" data sheet

The following table provides information about the project.

Coordinator
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN 

Organization address
address: REGINA PACIS WEG 3
city: BONN
postcode: 53113
website: www.uni-bonn.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙719˙583 €
 EC max contribution 1˙719˙583 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2015
 Duration (year-month-day) from 2015-11-01   to  2020-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN DE (BONN) coordinator 1˙719˙583.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Many milestone results in mathematics emerge from interactions and transfer of techniques and methods between different areas. I want to attack outstanding problems concerning K-theory, L^2-invariants, manifolds and group theory. The time is ripe to use the exciting and profound progress that has been made during the last years in the individual areas to build new bridges, gain new insights, open the door to new applications, and to trigger new innovative activities worldwide lasting beyond the proposed funding period.

The starting point are the prominent conjectures of Farrell-Jones on the algebraic K- and L-theory of group rings, of Baum-Connes on the topological K-theory of reduced group C^*-algebras, and of Atiyah on the integrality of L^-Betti numbers.

I intend to analyze and establish the Farrell-Jones Conjecture in other settings such as topological cyclic homology of ``group rings' over the sphere spectrum, algebraic K-theory of Hecke algebras of totally disconnected groups, the topological K-theory of Fr'echet group algebras, and Waldhausen's A-theory of classifying spaces of groups. This has new and far-reaching consequences for automorphism groups of closed aspherical manifolds, the structure of group rings, and representation theory. Recent proofs by the PI of the Farrell-Jones Conjecture for certain classes of groups require input from homotopy theory, geometric group theory, controlled topology and flows on metric spaces, and will be transferred to the new situations. There is also a program towards a proof of the Atiyah Conjecture based on the Farrell-Jones Conjecture and ring theory. Furthermore, I want to attack open problems such as the approximation of L^2-torsion for towers of finite coverings, and the relation of the first L^2-Betti number, the cost and the rank gradient of a finitely generated group. I see a high potential for new striking applications of the Farrell-Jones Conjecture and L^2-techniques to manifolds and groups.

 Publications

year authors and title journal last update
List of publications.
2017 Markus Land, Thomas Nikolaus, Karol Szumiło
Localization of cofibration categories andgroupoid C∗–algebras
published pages: 3007-3020, ISSN: 1472-2747, DOI: 10.2140/agt.2017.17.3007
Algebraic & Geometric Topology 17/5 2019-06-20
2018 Wolfgang Lück, Peter Linnell
Localization, Whitehead groups and the Atiyah conjecture
published pages: 33-53, ISSN: 2379-1691, DOI: 10.2140/akt.2018.3.33
Annals of K-Theory 3/1 2019-06-20
2018 Land, Markus; Nikolaus, Thomas
On the Relation between K- and L-Theory of $C^*$-Algebras
published pages: 517-563, ISSN: 0025-5831, DOI:
Mathematische Annalen volume 371 2019-06-20
2016 Lück, W. and Steimle, W.
Splitting the relative assembly map, nil-terms and involutions
published pages: 339 - 377, ISSN: 2379-1691, DOI:
Annals of K-theory vol 1 2019-06-20
2017 Wolfgang Lück, Holger Reich, John Rognes, Marco Varisco
Assembly maps for topological cyclic homology of group algebras
published pages: , ISSN: 0075-4102, DOI: 10.1515/crelle-2017-0023
Journal für die reine und angewandte Mathematik (Crelles Journal) 0/0 2019-06-20
2015 Dubois, J., Friedl, S., and Lück, W.
Three flavours of twisted knot invariants
published pages: 143-169, ISSN: , DOI:
Introduction to modern mathematics Adv. Lect. Math. (ALM) 33 2019-06-20
2017 Stefan Friedl, Wolfgang Lück
Universal L2-torsion, polytopes and applications to 3-manifolds
published pages: 1114-1151, ISSN: 0024-6115, DOI: 10.1112/plms.12035
Proceedings of the London Mathematical Society 114/6 2019-06-20
2020 Lueck, Wolfgang
Assembly Maps
published pages: , ISSN: , DOI:
to appear in the macbook of homotopy theory 3 2019-06-20
2019 Stefan Friedl, Wolfgang Lück
The $L^2$-torsion function and the Thurston norm of 3-manifolds
published pages: 21-52, ISSN: 0010-2571, DOI: 10.4171/cmh/453
Commentarii Mathematici Helvetici 94/1 2019-08-06
2018 Tom Farrell, Wolfgang Lück, Wolfgang Steimle
Approximately fibering a manifold over an aspherical one
published pages: 669-726, ISSN: 0025-5831, DOI:
Mathematische Annalen volume 370 2019-06-20
2018 Nils-Edvin Enkelmann, Wolfgang Lück, Malte Pieper, Mark Ullmann, Christoph Winges
On the Farrell–Jones conjecture forWaldhausen’s A–theory
published pages: 3321-3394, ISSN: 1465-3060, DOI: 10.2140/gt.2018.22.3321
Geometry & Topology 22/6 2019-05-10
2018 Wolfgang Lück
Twisting L2-invariants with finite-dimensional representations
published pages: 723-816, ISSN: 1793-5253, DOI: 10.1142/S1793525318500279
Journal of Topology and Analysis 10/04 2019-05-07

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KL2MG-INTERACTIONS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KL2MG-INTERACTIONS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More  

SoftHandler (2019)

Commercial feasibility of an integrated soft robotic system for industrial handling

Read More