Opendata, web and dolomites


New stability testing method to predict the performance of amorphous formulations

Total Cost €


EC-Contrib. €






Project "AMORPHORM" data sheet

The following table provides information about the project.


Organization address
address: NORREGADE 10
postcode: 1165

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  0000-00-00


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 212˙194.00


 Project objective

The importance of amorphous water-soluble substances has been increasingly recognized over last two decades in the pharmaceutical and food industries. Amorphous solids of small molecules offer a solubility advantage over their crystalline counterparts. Parallel to that, large molecular systems, such as proteins and enzymes, are difficult to crystallize but are often stabilized in amorphous formulations. Amorphous systems are inherently unstable and hence more prone to physico-chemical changes. In order to increase the safety and reduce the risk of their usage for both human patients/customers and industry it is necessary to determine their long-term physico-chemical stability. There is currently no existing reliable and widely applicable method for stability testing of amorphous formulations. During my research I have demonstrated such a method can be based on a terahertz spectroscopy, which probes the mobility of molecules when they are solids. I found that this approach is universal and should be able to be applied for all hydrogen bonding solids, which spans almost all organic compounds. The objectives of the proposal can be split into 3 blocks. The technology block will focus on developing terahertz spectroscopy into a reliable stability testing method to industrial standards and to explore whether more affordable instrumentation can be deployed alternatively to reduce the capital cost of the method. In the pharmaceutical block we will aim to determine how pharmaceutical formulation and processing steps can be optimised for amorphous stability. We will examine also critical storage conditions for the amorphous products and how to prevent any recrystallization during their dissolution. In the food and biotechnology block we will aim to transfer the methods developed for small drug molecules to protein and enzyme preservation in glassy matrices.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AMORPHORM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AMORPHORM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More  

DEMOS (2019)

Disfluencies and Eye MOvements during Speech: what can they reveal about language production?

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More