Opendata, web and dolomites

ReachingCompleteness SIGNED

The Molecular Basis of Somatic Nuclear Reprogramming

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ReachingCompleteness project word cloud

Explore the words cloud of the ReachingCompleteness project. It provides you a very rough idea of what is the project "ReachingCompleteness" about.

somatic    prevailing    generation    establishing    employing    leads    noise    fish    reprogramming    infancy    mechanisms    rna    single    resource    safe    stringent    uncover    efforts    molecule    cutting    parallel    measured    degree    mrna    dictate    rare    tools    basic    fluorescent    invaluable    reporter    limitations    solely    cells    deciphering    tests    trace    types    developmental    pluripotency    sophisticated    profile    successful    majority    screening    cell    signal    fluidigm    exhibit    conversion    quality    hinder    direct    capture    converted    cas9    ideal    transcriptome    crispr    progress    intend    knock    uncovering    disease    models    stable    grant    global    nuclear    ratio    complete    bioinformatic    detect    reprogrammable    aberrant    patient    segregate    pluripotent    transcriptional    drug    suggests    poor    biomark    overcome    incomplete    edge    overview    hurdles    vast    technologies    stem    therapy    ipscs    molecular    critical    monitor    seq   

Project "ReachingCompleteness" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website http://www.buganimlab.com
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2021-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 1˙500˙000.00

Map

 Project objective

The direct conversion approach and the generation of induced pluripotent stem cells (iPSCs) provide an invaluable resource of cells for disease modelling, drug screening, and patient-specific cell-based therapy. However, the directly converted cells are not stable, and the vast majority of iPSCs exhibit poor developmental potential as measured by stringent pluripotency tests. This suggests that the prevailing method of reprogramming is not ideal and leads to aberrant/incomplete conversion. To improve the quality of the converted cells, efforts should be focused on uncovering the molecular mechanisms that characterize the nuclear reprogramming process. There are two critical hurdles that hinder the progress of deciphering the elements that dictate successful reprogramming: (1) The ability to detect and capture solely the rare cells that eventually will be converted and (2) to monitor the transcriptional profile of cells at the single-cell level. Single-cell technology is in its infancy and many of the methods used today are characterized by high noise to signal ratio. In this grant proposal we intend to overcome these limitations by (1) establishing a complex fluorescent knock-in reporter system using the CRISPR/Cas9 method to capture the early rare reprogrammable cells and by (2) employing several cutting-edge single-cell technologies, RNA-Seq, Fluidigm BioMark and single-molecule mRNA-FISH, to segregate the real signal from the noise. To identify common and more global elements that facilitate nuclear reprogramming at large, we will trace in parallel, reprogrammable cells from two different somatic cell conversion models that reach high degree of nuclear reprogramming, and analyse their transcriptome using sophisticated bioinformatic tools. This study will provide a general overview of the changes that occur during the conversion of various cell types and will uncover the basic features that are essential to reach safe and complete conversion.

 Publications

year authors and title journal last update
List of publications.
2017 Mohammad Jaber, Shulamit Sebban, Yosef Buganim
Acquisition of the pluripotent and trophectoderm states in the embryo and during somatic nuclear reprogramming
published pages: 37-43, ISSN: 0959-437X, DOI: 10.1016/j.gde.2017.06.012
Current Opinion in Genetics & Development 46 2019-07-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REACHINGCOMPLETENESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REACHINGCOMPLETENESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

MUSMICRO (2020)

Causes and consequences of variation in the mammalian microbiota

Read More