Opendata, web and dolomites

ReachingCompleteness SIGNED

The Molecular Basis of Somatic Nuclear Reprogramming

Total Cost €


EC-Contrib. €






 ReachingCompleteness project word cloud

Explore the words cloud of the ReachingCompleteness project. It provides you a very rough idea of what is the project "ReachingCompleteness" about.

poor    cutting    stem    grant    pluripotent    vast    tests    converted    safe    establishing    parallel    molecular    fish    aberrant    nuclear    critical    ratio    rare    fluidigm    cells    rna    edge    limitations    hinder    therapy    tools    disease    capture    monitor    resource    solely    uncovering    crispr    pluripotency    hurdles    stable    suggests    overview    patient    successful    efforts    signal    intend    somatic    models    single    measured    molecule    screening    detect    generation    transcriptional    reprogramming    exhibit    cell    prevailing    ipscs    cas9    deciphering    basic    knock    direct    degree    developmental    majority    technologies    reprogrammable    transcriptome    segregate    infancy    ideal    employing    noise    reporter    leads    mechanisms    profile    bioinformatic    dictate    stringent    conversion    sophisticated    seq    trace    global    overcome    quality    biomark    fluorescent    complete    drug    progress    mrna    invaluable    types    uncover    incomplete   

Project "ReachingCompleteness" data sheet

The following table provides information about the project.


Organization address
postcode: 91904

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2021-02-28


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

The direct conversion approach and the generation of induced pluripotent stem cells (iPSCs) provide an invaluable resource of cells for disease modelling, drug screening, and patient-specific cell-based therapy. However, the directly converted cells are not stable, and the vast majority of iPSCs exhibit poor developmental potential as measured by stringent pluripotency tests. This suggests that the prevailing method of reprogramming is not ideal and leads to aberrant/incomplete conversion. To improve the quality of the converted cells, efforts should be focused on uncovering the molecular mechanisms that characterize the nuclear reprogramming process. There are two critical hurdles that hinder the progress of deciphering the elements that dictate successful reprogramming: (1) The ability to detect and capture solely the rare cells that eventually will be converted and (2) to monitor the transcriptional profile of cells at the single-cell level. Single-cell technology is in its infancy and many of the methods used today are characterized by high noise to signal ratio. In this grant proposal we intend to overcome these limitations by (1) establishing a complex fluorescent knock-in reporter system using the CRISPR/Cas9 method to capture the early rare reprogrammable cells and by (2) employing several cutting-edge single-cell technologies, RNA-Seq, Fluidigm BioMark and single-molecule mRNA-FISH, to segregate the real signal from the noise. To identify common and more global elements that facilitate nuclear reprogramming at large, we will trace in parallel, reprogrammable cells from two different somatic cell conversion models that reach high degree of nuclear reprogramming, and analyse their transcriptome using sophisticated bioinformatic tools. This study will provide a general overview of the changes that occur during the conversion of various cell types and will uncover the basic features that are essential to reach safe and complete conversion.


year authors and title journal last update
List of publications.
2017 Mohammad Jaber, Shulamit Sebban, Yosef Buganim
Acquisition of the pluripotent and trophectoderm states in the embryo and during somatic nuclear reprogramming
published pages: 37-43, ISSN: 0959-437X, DOI: 10.1016/j.gde.2017.06.012
Current Opinion in Genetics & Development 46 2019-07-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REACHINGCOMPLETENESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REACHINGCOMPLETENESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  


The Mass Politics of Disintegration

Read More  


Economic Fluctuations, Productivity Growth and Stabilization Policies: A Keynesian Growth Perspective

Read More