Opendata, web and dolomites

reSGulating TERMINATED

Functional analysis of Stress Granules formation in plant adaptation to stress

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 reSGulating project word cloud

Explore the words cloud of the reSGulating project. It provides you a very rough idea of what is the project "reSGulating" about.

reducing    efficient    fundamental    kept    model    plant    silent    limited    genes    translation    impaired    reinhardtii    alga    crop    assembly    molecules    disassembly    found    sgs    recovery    stresses    mrnas    chlamydomonas    stored    despite    anticipated    clearance    photosynthetic    regulate    function    composition    conserved    yeast    cytoplasmic    worldwide    besides    boosting    fitness    molecular    structures    stress    thaliana    advantage    evolutionary    genetic    scientific    plants    granules    core    largely    autophagy    insights    endowed    closer    paving    optimal    environmental    arabidopsis    energy    modulation    expenditure    helping    regulation    formative    cell    green    causes    modulate    responsive    variety    collaborations    unknown    useless    mechanism    50    biology    governs    prevent    degraded    career    producing    primary    compendium    animal    mechanisms    solid    link    yields    resistance    contents    proteins    mrna    models    strengthen    species    mutants    threats    compartmentalization   

Project "reSGulating" data sheet

The following table provides information about the project.

Coordinator
AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS 

Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006
website: http://www.csic.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website https://twitter.com/stress_granules
 Total cost 170˙121 €
 EC max contribution 170˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2019-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) coordinator 170˙121.00

Map

 Project objective

Environmental stresses are the primary causes of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. To get an optimal adaptation to environmental threats, plants have evolved a variety of complex and efficient mechanisms of resistance, including compartmentalization of mRNAs and proteins in cytoplasmic structures known as Stress Granules (SGs). In these, mRNA molecules are stored, degraded or kept silent in order to prevent energy expenditure on producing useless proteins, promoting thus the translation of specific stress-responsive genes that lead to the recovery from stress. Despite their importance in cell fitness, the overall composition of SGs, as well as their assembly requirements and regulation remain largely unknown. Although SGs have been found to be evolutionary conserved between species, the current knowledge of how plant SGs can regulate and modulate the response to stress is still limited. The overall objective of this proposal is to increase our understanding of the fundamental function of SGs on the regulation of plant response to stress. To this end, a compendium of methodologies including genetic and cell biology will be implemented in order to identify and characterize mutants impaired in SGs formation, taking advantage of well-established photosynthetic model systems such as Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii. Given that autophagy is a core mechanism that governs the regulation of SGs formation, disassembly or clearance in animal and yeast models, this molecular link will be studied in higher plants. It is anticipated that implementation of this project will provide novel insights into SGs biology, helping to enhance our knowledge on the modulation of stress responses. Besides, the proposed project is endowed of solid formative contents that will strengthen my previous experience, boosting my future scientific career and paving the way for closer scientific collaborations.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RESGULATING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RESGULATING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More