Opendata, web and dolomites

EpiMech SIGNED

Epithelial cell sheets as engineering materials: mechanics, resilience and malleability

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EpiMech project word cloud

Explore the words cloud of the EpiMech project. It provides you a very rough idea of what is the project "EpiMech" about.

qualitatively    epithelia    behavior    unknown    surfaces    flaw    networks    regarding    chip    interact    exhibit    fluid    retain    paradoxically    relationships    scales    membrane    longer    3d    rheology    hydrogels    self    lipid    heal    unlike    property    organ    computational    framework    assembly    barrier    conflicting    tunable    morphogenetic    attached    fibrous    microdevices    inert    give    patterning    guts    theoretical    consequence    cell    fracture    intrigued    environment    technologies    buckling    combine    free    experimental    driving    fundamental    manipulate    bioinspired    hydraulic    structure    bilayers    materials    adhesion    force    body    poroelasticity    excessive    molecules    permeability    tension    remodel    suggesting    malleable    protective    mechanical    tubular    shown    living    idea    starting    cultured    besides    structures    cells    times    active    biotechnology    chemical    serves    monolayers    epithelium    vitro    functional    material    villi    lines    engineering    time    dimensional    solid    mechanically    largely    cavities    plane    stretch    matrix    cohesive    dynamics    filled    broad    flow    resilience    shaping    integrity    cytoskeleton    view    junctional    layer    network    epithelial    mechanobiological    tolerant   

Project "EpiMech" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT POLITECNICA DE CATALUNYA 

Organization address
address: CALLE JORDI GIRONA 31
city: BARCELONA
postcode: 8034
website: www.upc.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 1˙989˙875 €
 EC max contribution 1˙989˙875 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-CoG
 Funding Scheme ERC-COG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT POLITECNICA DE CATALUNYA ES (BARCELONA) coordinator 1˙989˙875.00

Map

 Project objective

The epithelium is a cohesive two-dimensional layer of cells attached to a fluid-filled fibrous matrix, which lines most free surfaces and cavities of the body. It serves as a protective barrier with tunable permeability, which must retain integrity in a mechanically active environment. Paradoxically, it must also be malleable enough to self-heal and remodel into functional 3D structures such as villi in our guts or tubular networks. Intrigued by these conflicting material properties, the main idea of this proposal is to view epithelial monolayers as living engineering materials. Unlike lipid bilayers or hydrogels, widely used in biotechnology, cultured epithelia are only starting to be integrated in organ-on-chip microdevices. As for any complex inert material, this program requires a fundamental understanding of the structure-property relationships. (1) Regarding their effective in-plane rheology, at short time-scales epithelia exhibit solid-like behavior while at longer times they flow as a consequence of the only qualitatively understood dynamics of the cell-cell junctional network. (2) As for material failure, excessive tension can lead to epithelial fracture, but as we have recently shown, matrix poroelasticity can also cause hydraulic fracture under stretch. However, it is largely unknown how adhesion molecules, membrane, cytoskeleton and matrix interact to give epithelia their robust and flaw-tolerant resilience. (3) Regarding shaping 3D epithelial structures, besides the classical view of chemical patterning, mechanical buckling is emerging as a major morphogenetic driving force, suggesting that it may be possible design 3D epithelial structures in vitro by mechanical self-assembly. Towards understanding (1,2,3), we will combine a broad range of theoretical, computational and experimental methods. Besides providing fundamental mechanobiological understanding, this project will provide a framework to manipulate epithelia in bioinspired technologies.

 Publications

year authors and title journal last update
List of publications.
2019 Marino Arroyo, Xavier Trepat
Embryonic self-fracking
published pages: 442-443, ISSN: 0036-8075, DOI: 10.1126/science.aay2860
Science 365/6452 2020-04-08
2019 Caterina Tozzi, Nikhil Walani, Marino Arroyo
Out-of-equilibrium mechanochemistry and self-organization of fluid membranes interacting with curved proteins
published pages: 93004, ISSN: 1367-2630, DOI: 10.1088/1367-2630/ab3ad6
New Journal of Physics 21/9 2020-04-08
2019 Alejandro Torres-Sánchez, Juan M. Vanegas, Prashant K. Purohit, Marino Arroyo
Combined molecular/continuum modeling reveals the role of friction during fast unfolding of coiled-coil proteins
published pages: 4961-4975, ISSN: 1744-683X, DOI: 10.1039/c9sm00117d
Soft Matter 15/24 2020-04-08
2017 Marino Arroyo, Xavier Trepat
Hydraulic fracturing in cells and tissues: fracking meets cell biology
published pages: 1-6, ISSN: 0955-0674, DOI: 10.1016/j.ceb.2016.11.001
Current Opinion in Cell Biology 44 2020-04-08
2019 Anabel-Lise Le Roux, Xarxa Quiroga, Nikhil Walani, Marino Arroyo, Pere Roca-Cusachs
The plasma membrane as a mechanochemical transducer
published pages: , ISSN: 0962-8436, DOI:
Philosophical Transactions B accepted 2020-04-08
2018 Dimitri Kaurin
A theoretical and computational study of soft adhesion mediated by mobile binders
published pages: , ISSN: , DOI:
2020-04-08
2019 Alejandro Torres-Sánchez, Daniel Millán, Marino Arroyo
Modelling fluid deformable surfaces with an emphasis on biological interfaces
published pages: , ISSN: 0022-1120, DOI:
Journal of Fluid Mechanics accepted 2020-04-08
2018 Bin Li, Daniel Millán, Alejandro Torres-Sánchez, Benoît Roman, Marino Arroyo
A variational model of fracture for tearing brittle thin sheets
published pages: 334-348, ISSN: 0022-5096, DOI: 10.1016/j.jmps.2018.06.022
Journal of the Mechanics and Physics of Solids 119 2020-04-08
2018 Ernest Latorre, Sohan Kale, Laura Casares, Manuel Gómez-González, Marina Uroz, Léo Valon, Roshna V. Nair, Elena Garreta, Nuria Montserrat, Aránzazu del Campo, Benoit Ladoux, Marino Arroyo, Xavier Trepat
Active superelasticity in three-dimensional epithelia of controlled shape
published pages: 203-208, ISSN: 0028-0836, DOI: 10.1038/s41586-018-0671-4
Nature 563/7730 2020-04-08
2019 Giovanni Noselli, Alfred Beran, Marino Arroyo, Antonio DeSimone
Swimming Euglena respond to confinement with a behavioural change enabling effective crawling
published pages: , ISSN: 1745-2473, DOI: 10.1038/s41567-019-0425-8
Nature Physics 2020-04-08
2019 Giovanni Noselli, Marino Arroyo, Antonio DeSimone
Smart helical structures inspired by the pellicle of euglenids
published pages: 234-246, ISSN: 0022-5096, DOI: 10.1016/j.jmps.2018.09.036
Journal of the Mechanics and Physics of Solids 123 2020-04-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EPIMECH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EPIMECH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoBeam (2019)

Quantum Coherent Control: Self–Interference of Electron Beams with Nanostructures

Read More  

METAPoF (2019)

Metaphor as the Purpose of the Firm

Read More  

ULIGHT (2020)

Bright and Compact Deep Ultraviolet Light Sources for Healthcare and Industry

Read More