Opendata, web and dolomites


Natural Language Programming: Turning Text into Executable Code

Total Cost €


EC-Contrib. €






 NLPRO project word cloud

Explore the words cloud of the NLPRO project. It provides you a very rough idea of what is the project "NLPRO" about.

environment    strict    extraction    leap    compilers    verification    view    dynamic    compiler    output    action    ai    expressivity    capacity    questions    feed    se    point    cross    nl    cnls    fundamentally    online    stone    closely    vast    language    broad    goes    themselves    fundamental    fragments    coverage    input    learning    respectively    limited    return    truly    community    separate    endow    semantics    unambiguous    english    synthesis    efforts    interact    huge    extracts    nlp    almost    semantic    native    engineering    feedback    description    texts    update    attracted    computers    simulation    stepping    basis    cognitive    termed    understanding    vice    successfully    small    parsing    inception    grammars    programming    structures    human    intertwined    replace    tongue    humans    seemingly    solutions    can    interpretation    versa    idea    programs    disciplinary    actually    executable    robotics    static    natural    cnl    software    relied    argue    computing    languages    respective    accept   

Project "NLPRO" data sheet

The following table provides information about the project.


Organization address
postcode: 52900

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙449˙375 €
 EC max contribution 1˙449˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2022-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BAR ILAN UNIVERSITY IL (RAMAT GAN) coordinator 1˙089˙199.00
2    THE OPEN UNIVERSITY IL (RAANANA) participant 360˙175.00


 Project objective

Can we program computers in our native tongue? This idea, termed natural language programming, has attracted attention almost since the inception of computers themselves. From the point of view of software engineering (SE), efforts to program in natural language (NL) have relied thus far on controlled natural languages (CNL) -- small unambiguous fragments of English with strict grammars and limited expressivity. Is it possible to replace CNLs with truly natural, human language? From the point of view of natural language processing (NLP), current technology successfully extracts static information from NL texts. However, human-like NL understanding goes far beyond such extraction -- it requires dynamic interpretation processes which affect, and are affected by, the environment, update states and lead to action. So, is it possible to endow computers with this kind of dynamic NL understanding? These two questions are fundamental to SE and NLP, respectively, and addressing each requires a huge leap forward in the respective field. In this proposal I argue that the solutions to these seemingly separate challenges are actually closely intertwined, and that one community's challenge is the other community's stepping stone for a huge leap, and vice versa. Specifically, I propose to view executable programs in SE as semantic structures in NLP, and use them as the basis for broad-coverage dynamic semantic parsing. My ambitious, cross-disciplinary goal is to develop a new NL compiler based on this novel approach to NL semantics. The NL compiler will accept an NL description as input and return an executable system as output. Moreover, it will continuously improve its NL understanding capacity via online learning that will feed on verification, simulation, synthesis or user feedback. Such dynamic, ever-improving, NL compilers will have vast applications in AI, SE, robotics and cognitive computing and will fundamentally change the way humans and computers interact.


year authors and title journal last update
List of publications.
2019 Tzuf Paz-Argaman, Reut Tsarfaty
RUN through the Streets: A New Dataset and Baseline Models for Realistic Urban Navigation
published pages: 6448-6454, ISSN: , DOI: 10.18653/v1/d19-1681
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) 2020-04-03
2019 Tzuf Paz-Argaman
Natural Language Navigation
published pages: , ISSN: , DOI:
2017 Tomer Cagan, Stefam Frank, Reut Tsarfaty
Data-Driven Broad-Coverage Grammars for Opinionated Natural Language Generation (ONLG)
published pages: , ISSN: , DOI:
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics 2020-02-27
2018 More , Amir; Çetinoğlu , Özlem; Çöltekin , Çağri; Habash , Nizar; Sagot , Benoît; Seddah , Djamé; Taji , Dima; Tsarfaty , Reut
CoNLL-UL: Universal Morphological Lattices for Universal Dependency Parsing
published pages: , ISSN: , DOI:
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018) 2020-02-27
2018 Amit Seker, Amir More, Reut Tsarfaty
Universal Morpho-Syntactic Parsing and the Contribution of Lexica: Analyzing the {ONLP} Lab Submission to the CoNLL 2018 Shared Task
published pages: , ISSN: , DOI:
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies 2020-02-27
2018 Reut Tsarfaty
The Natural Language Programming {(NLPRO)} Project: Turning Text into Executable Code
published pages: , ISSN: , DOI:
Proceedings of REFSQ-2018 Workshops 2020-02-27
2017 Amir More, Reut Tsarfaty
Universal Joint Morph-Syntactic Processing: The Open University of Israel\'s Submission to The CoNLL 2017 Shared Task
published pages: , ISSN: , DOI:
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies 2020-02-27
2018 Adam Amram, Anat ben-David, reut Tsarfaty
Representations and Architectures in Neural Sentiment Analysis for Morphologically Rich Languages: A Case Study from Modern Hebrew
published pages: , ISSN: , DOI:
Proceedings of the 27th International Conference on Computational Linguistics 2020-02-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NLPRO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NLPRO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SUExp (2018)

Strategic Uncertainty: An Experimental Investigation

Read More  

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

ECOLBEH (2020)

The Ecology of Collective Behaviour

Read More