Opendata, web and dolomites


Controlling Fluid Resistances at Membranes

Total Cost €


EC-Contrib. €






 ConFluReM project word cloud

Explore the words cloud of the ConFluReM project. It provides you a very rough idea of what is the project "ConFluReM" about.

boundary    topology    membranes    resistances    strategic    tools    limitations    chemical    device    colloids    flow    minimize    synthesize    extremely    shaping    transport    fluid    fabricate    printing    today    materials    solutes    surface    additive    gives    dynamical    hydrodynamical    micropiv    cfd    simulation    fluidic    polarization    imposing    dynamics    permeable    fouling    gradients    geometry    techniques    form    computational    microfluidic    laminary    disturbs    ineffective    always    accumulates    destablize    instruments    mixing    fabrication    3d    material    manufacturing    full    separation    overcome    methodology    membrane    rigorous    conflurem    layers    quantify    synthetic    imaging    causes    retained    selective    scaling    mesoscale    nano    concentration    rates    biological    experimental    flowmri    patterning    prevalent    representative    cfdem    interface    phenomena    translational    comprehend    mass    stamping    diffusion    lateral    channels    micro    irreversible    engineer   

Project "ConFluReM" data sheet

The following table provides information about the project.


Organization address
city: AACHEN
postcode: 52074

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website
 Total cost 2˙500˙000 €
 EC max contribution 2˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-AdG
 Funding Scheme ERC-ADG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Today’s materials research in the field of synthetic membranes gives access to highly permeable and extremely selective membranes. However, their potential will remain ineffective as high and selective transport rates always go along with resistances emerging at the membrane fluid interface in the form diffusion limitations in the laminary boundary layers. In order to make full use of the very many new materials, also new means to control and minimize such fluid based resistances need to be developed. Yet another phenomena disturbs the full potential use of membranes: retained solutes, colloids and biological matter accumulates at the membrane interface and causes irreversible fouling and scaling. The proposed research aims to develop a rigorous translational methodology to control and improve mass transport through the fluid/membrane interface. ConFluReM will establish Strategic Tools and New Instruments to: (1) comprehend and quantify the prevalent mass transport resistances in representative membrane separation processes, (2) synthesize and fabricate new nano-, micro- and mesoscale material and device systems as instruments to control and overcome the limitations of concentration polarization and fouling, Strategic Tools are experimental and simulation methods to quantify and engineer the mass transport and hydrodynamical properties of the new membrane systems. These encompass flow imaging (flowMRI, microPIV and microfluidic transport studies) as well as computational fluidic dynamics (CFD and CFDEM). New Instruments are synthetic and fabrication means as well as process condition means to improve mixing at the membrane/fluid interface. These encompass (a) lateral patterning of chemical topology of the membrane surface by printing and stamping, (b) shaping the 3D geometry of channels using additive manufacturing techniques and (c) imposing dynamical gradients to destablize fluid side resistances.


year authors and title journal last update
List of publications.
2020 Deniz Rall, Artur M. Schweidtmann, Benedikt M. Aumeier, Johannes Kamp, Jannik Karwe, Katrin Ostendorf, Alexander Mitsos, Matthias Wessling
Simultaneous rational design of ion separation membranes and processes
published pages: 117860, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2020.117860
Journal of Membrane Science 600 2020-04-04
2020 Tao Luo, Florian Roghmans, Matthias Wessling
Ion mobility and partition determine the counter-ion selectivity of ion exchange membranes
published pages: 117645, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2019.117645
Journal of Membrane Science 597 2020-04-04
2019 Sarah Armbruster, Felix Stockmeier, Moritz Junker, Maira Schiller-Becerra, Süleyman Yüce, Matthias Wessling
Short and spaced twisted tapes to mitigate fouling in tubular membranes
published pages: 117426, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2019.117426
Journal of Membrane Science 2019-10-03
2017 Tobias Luelf, Maik Tepper, Hans Breisig, Matthias Wessling
Sinusoidal shaped hollow fibers for enhanced mass transfer
published pages: 302-308, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2017.03.030
Journal of Membrane Science 533 2019-06-13
2018 Martin Wiese, Chris Malkomes, Bernd Krause, Matthias Wessling
Flow and filtration imaging of single use sterile membrane filters
published pages: 274-285, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2018.02.002
Journal of Membrane Science 552 2019-06-13
2018 Tobias Luelf, Deniz Rall, Denis Wypysek, Martin Wiese, Tim Femmer, Christian Bremer, Jan Ulrich Michaelis, Matthias Wessling
3D-printed rotating spinnerets create membranes with a twist
published pages: 7-19, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2018.03.026
Journal of Membrane Science 555 2019-06-13
2018 Jonas Lölsberg, John Linkhorst, Arne Cinar, Alexander Jans, Alexander Kuehne, Matthias Wessling
3D Nanofabrication inside rapid prototyped microfluidic channels showcased by wet-spinning of single micrometre fibres
published pages: , ISSN: 1473-0197, DOI: 10.1039/C7LC01366C
Lab on a Chip 2019-06-13
2018 Korcan Percin, Alexandra Rommerskirchen, Robert Sengpiel, Youri Gendel, Matthias Wessling
3D-printed conductive static mixers enable all-vanadium redox flow battery using slurry electrodes
published pages: 228-233, ISSN: 0378-7753, DOI: 10.1016/j.jpowsour.2018.01.061
Journal of Power Sources 379 2019-06-13
2017 Jonas Lölsberg, Ottokar Starck, Serafin Stiefel, Jonas Hereijgers, Tom Breugelmans, Matthias Wessling
3D-Printed Electrodes with Improved Mass Transport Properties
published pages: 3309-3313, ISSN: 2196-0216, DOI: 10.1002/celc.201700662
ChemElectroChem 4/12 2019-06-13
2018 J. Lohaus, Y.M. Perez, M. Wessling
What are the microscopic events of colloidal membrane fouling?
published pages: 90-98, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2018.02.023
Journal of Membrane Science 553 2019-06-13
2018 Sarah Armbruster, Oskar Cheong, Jonas Lölsberg, Svetlana Popovic, Süleyman Yüce, Matthias Wessling
Fouling mitigation in tubular membranes by 3D-printed turbulence promoters
published pages: 156-163, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2018.02.015
Journal of Membrane Science 554 2019-06-13
2019 Deniz Rall, Daniel Menne, Artur M. Schweidtmann, Johannes Kamp, Lars von Kolzenberg, Alexander Mitsos, Matthias Wessling
Rational design of ion separation membranes
published pages: 209-219, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2018.10.013
Journal of Membrane Science 569 2019-06-06
2019 Denis Wypysek, Deniz Rall, Martin Wiese, Tobias Neef, Geert-Henk Koops, Matthias Wessling
Shell and lumen side flow and pressure communication during permeation and filtration in a multibore polymer membrane module
published pages: 254-267, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2019.04.070
Journal of Membrane Science 584 2019-06-06
2018 Florian Roghmans, Elizaveta Evdochenko, Felix Stockmeier, Sven Schneider, Amel Smailji, Rahul Tiwari, Annabel Mikosch, Elif Karatay, Alexander Kühne, Andreas Walther, Ali Mani, Matthias Wessling
2D Patterned Ion‐Exchange Membranes Induce Electroconvection
published pages: 1801309, ISSN: 2196-7350, DOI: 10.1002/admi.201801309
Advanced Materials Interfaces 6/1 2019-06-03
2019 Alexandra Rommerskirchen, Anna Kalde, Christian J. Linnartz, Leon Bongers, Georg Linz, Matthias Wessling
Unraveling charge transport in carbon flow-electrodes: Performance prediction for desalination applications
published pages: 507-520, ISSN: 0008-6223, DOI: 10.1016/j.carbon.2019.01.053
Carbon 145 2019-06-03
2019 Johannes Lohaus, Deniz Rall, Maximilian Kruse, Viktoria Steinberger, Matthias Wessling
On charge percolation in slurry electrodes used in vanadium redox flow batteries
published pages: 104-108, ISSN: 1388-2481, DOI: 10.1016/j.elecom.2019.02.013
Electrochemistry Communications 101 2019-06-03
2018 O. Nir, R. Sengpiel, M. Wessling
Closing the cycle: Phosphorus removal and recovery from diluted effluents using acid resistive membranes
published pages: 640-648, ISSN: 1385-8947, DOI: 10.1016/j.cej.2018.03.181
Chemical Engineering Journal 346 2019-05-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CONFLUREM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CONFLUREM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Photopharm (2020)

Photopharmacology: From Academia toward the Clinic.

Read More  


Economic Fluctuations, Productivity Growth and Stabilization Policies: A Keynesian Growth Perspective

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More