Opendata, web and dolomites

SaaStified

Simulation-as-a-Service Tool for Industrial Furnaces Innovative Engineering Design (SaaStified)

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SaaStified project word cloud

Explore the words cloud of the SaaStified project. It provides you a very rough idea of what is the project "SaaStified" about.

nowadays    engineering    mathematical    saving    enhanced    sometimes    postprocessing    automated    mechanics    furnaces    equations    customarily    occasionally    inaccurate    background    aerospace    dramatically    final    environment    pdes    optimize    grid    simplified    standard    consuming    efficient    energy    service    aided    operations    complexity    techniques    dynamics    computing    simulation    intermediate    tools    industry    fluid    cycle    workflow    outputs    accessible    computer    tool    spread    automotive    engineers    hence    thermodynamics    branches    numerical    happens    fidelity    quantitatively    introducing    skills    strategic    employed    industrial    standardized    improvement    asset    accurate    models    cae    differential    benefits    extremely    simulations    components    generation    partial    resorting    power    accuracy    running    workflows    plants    optimization    setting    usually    preprocessing    platform    optimized    saas    time    simpler    structural    industries    modeling    solution    employment    single   

Project "SaaStified" data sheet

The following table provides information about the project.

Coordinator
MOXOFF SPA 

Organization address
address: VIA SIMONE SCHAFFINO 11/19
city: MILANO
postcode: 20158
website: www.moxoff.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://www.moxoff.com/en/portfolio/simulation-as-a-service-tool-for-industrial-furnaces-innovative-engineering-design
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.5. (SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2016
 Duration (year-month-day) from 2016-11-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MOXOFF SPA IT (MILANO) coordinator 50˙000.00

Map

 Project objective

Simulations based on the numerical solution of Partial Differential Equations (PDEs) are nowadays customarily being applied for the design of industrial products and plants, in several branches of the Computer Aided Engineering (CAE), such as thermodynamics, fluid dynamics, structural mechanics. The improvement of the mathematical modeling tools and the availability of computing power have dramatically enhanced the accuracy of computer based simulations, and hence the support they offer to engineering design process. Yet, due to their complexity, in most cases simulations are not fully integrated into the design workflow. Operations as preprocessing, grid generation, setting up and running the simulations, and postprocessing the outputs, require specific skills and are extremely time and resources consuming. For these reasons, design engineers are sometimes resorting to simplified low fidelity models, which are often quantitatively inaccurate. More complex and accurate high fidelity models are only and occasionally considered at the very end of the design cycle, and are usually employed to optimize single components or to provide a final assessment of the overall accuracy of the standard simpler models. In this background, introducing accessible high-fidelity models in a user friendly intermediate environment would represent a strategic asset to facilitate and spread simulation-based design approaches and their benefits for industries in new industrial applications, as already happens for example in automotive or aerospace industry, towards a more efficient resources employment, energy saving and optimized products. The objective of the project is to set up a user friendly high-fidelity simulation platform, based on efficient simulation techniques and standardized automated workflows to be provided as a Simulation-as-a-Service (SaaS) tool, for the design and optimization of industrial furnaces.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SAASTIFIED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SAASTIFIED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.5.;H2020-EU.2.3.1.)

PBTech (2016)

Combined Plasma Biotrickling system for treating industrial VOC emissions

Read More  

APA (2018)

Filter-less water-based Air Pollution Abatement system

Read More  

PAIR (2015)

Plasma active pollution control system

Read More