Opendata, web and dolomites

QD-NOMS SIGNED

Elementary quantum dot networks enabled by on-chip nano-optomechanical systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QD-NOMS project word cloud

Explore the words cloud of the QD-NOMS project. It provides you a very rough idea of what is the project "QD-NOMS" about.

demonstrators    nano    purification    engineering    boson    realize    swapping    decade    first    practical    deterministic    optomechanical    toolkit    be    photon    arrays    interactions    photons    science    cutting    downscale    artificial    scalability    thrilling    lt    issue    entangling    times    longstanding    solid    physics    sources    unsolved    goals    multiple    researches    footprint    edge    fashion    small    photonic    size    entanglement    technological    graph    upscale    innovative    tunable    chip    noms    technologies    almost    atoms    dots    unlike    limit    chips    compact    single    scientific    extended    elementary    questions    infinitely    micro    entangled    frontiers    networks    qd    demonstrations    scalable    sampling    led    building       brings    is    fundamental    qds    network    intellectual    quantum    semiconductor    indistinguishable    full    individual    system    tunabilities    silicon    integration    critical    platforms    gt    physical    waveguide   

Project "QD-NOMS" data sheet

The following table provides information about the project.

Coordinator
GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER 

Organization address
address: Welfengarten 1
city: HANNOVER
postcode: 30167
website: www.uni-hannover.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙774˙693 €
 EC max contribution 1˙774˙693 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER DE (HANNOVER) coordinator 1˙397˙853.00
2    LEIBNIZ-INSTITUT FUER FESTKOERPER- UND WERKSTOFFFORSCHUNG DRESDEN E.V. DE (DRESDEN) participant 376˙840.00

Map

 Project objective

Is there any limit to the size of a quantum system? How large and how small can it be? Both questions are related to scalability, a most critical issue in quantum technologies. A scalable quantum network, which can be extended almost infinitely, is built by entangling individual quantum systems, e.g. atoms. It will provide thrilling opportunities across a range of intellectual and technical frontiers in quantum information science. Building such a network is however a great challenge, in both physics and engineering.

Often referred to as artificial atoms, semiconductor quantum dots (QDs) are among the most promising single and entangled photon sources to build a photonic quantum network. However there is a longstanding and yet unsolved challenge on scalability, since, unlike real atoms, every QD is different. By engineering individual QDs with an innovative nano-optomechanical system (NOMS), elementary QD networks will be built via scalable interactions of single or entangled photons, in a fashion similar to that of real atoms. The scientific goals are to upscale QD networks with the first demonstrations of (1) indistinguishable entangled photons from different QDs, (2) deterministic entanglement swapping, purification and graph states with multiple QDs (3) deterministic Boson sampling with more than 4 QDs on chip. The technological goals are (1) to downscale the footprint (<50 µm) of individual QD sources with full tunabilities, and to realize (2) arrays (>4×4) of tunable single and entangled photon sources, (3) waveguide integration on III-V/silicon chips, and (4) compact quantum LED demonstrators. QD-NOMS will address the physical and technological challenges in building a solid-state QD-based quantum network. Its success does not only provide a novel toolkit to realize scalable QD systems for cutting-edge fundamental researches but also brings the semiconductor QD based platforms, after a decade of development, to the attention of practical applications.

 Publications

year authors and title journal last update
List of publications.
2019 B. Höfer, F. Olbrich, J. Kettler, M. Paul, J. Höschele, M. Jetter, S. L. Portalupi, F. Ding, P. Michler, O. G. Schmidt
Tuning emission energy and fine structure splitting in quantum dots emitting in the telecom O-band
published pages: 85112, ISSN: 2158-3226, DOI: 10.1063/1.5110865
AIP Advances 9/8 2020-03-10
2019 Michael Zopf, Robert Keil, Yan Chen, Jingzhong Yang, Disheng Chen, Fei Ding, Oliver G. Schmidt
Entanglement Swapping with Semiconductor-Generated Photons Violates Bell’s Inequality
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.123.160502
Physical Review Letters 123/16 2020-03-10
2017 Yan Chen, Yang Zhang, Robert Keil, Michael Zopf, Fei Ding, Oliver G. Schmidt
Temperature-Dependent Coercive Field Measured by a Quantum Dot Strain Gauge
published pages: 7864-7868, ISSN: 1530-6984, DOI: 10.1021/acs.nanolett.7b04138
Nano Letters 17/12 2019-09-06
2018 Yan Chen, Michael Zopf, Robert Keil, Fei Ding, Oliver G. Schmidt
Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-05456-2
Nature Communications 9/1 2019-08-29
2018 Michael Zopf, Tobias Macha, Robert Keil, Eduardo Uruñuela, Yan Chen, Wolfgang Alt, Lothar Ratschbacher, Fei Ding, Dieter Meschede, Oliver G. Schmidt
Frequency feedback for two-photon interference from separate quantum dots
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.98.161302
Physical Review B 98/16 2019-08-29
2017 Keil, Robert; Zopf, Michael; Chen, Yan; Höfer, Bianca; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G.
Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions
published pages: 15501, ISSN: 2041-1723, DOI: 10.15488/1682
Nature Communications 8 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QD-NOMS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QD-NOMS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

SUBMODULAR (2019)

The Power of Randomness and Continuity in Submodular Optimization

Read More  

CARBOFLOW (2020)

Streamlined carbon dioxide conversion in ionic liquids – a platform strategy for modern carbonylation chemistry

Read More