Opendata, web and dolomites

Trafisense

Trafisense is a real-time monitoring and early-warning service for high-risk situations in dry-type distribution and power transformers based on proprietary machine-learning technology.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Trafisense project word cloud

Explore the words cloud of the Trafisense project. It provides you a very rough idea of what is the project "Trafisense" about.

trafisense    receive    hardware    software    lack    warnings    leaving    weeks    days    machine    risk    original    transformers    summary    reduce    actionable    remote    initial    status    weekly    monitored    downtime    monitoring    manifest    arise    mainly    offshore    disruptions    installations    job    wind    hundred    deciphering    additional    data    display    worse    dry    onshore    exceptional    savings    translates    sites    fewer    customers    false    maintenance    insights    experts    failures    solution    shut    continuous    regarding    standard    transformer    root    sources    predict    house    practices    engineers    prevents    correspond    statistics    negatives    semiannual    electrical    indicates    daily    proprietary    suggesting    accurately    actions    service    last       amongst    considerable    basic    power    feeds    datacenters    accidents    automated    50    owners    60    notify    offers    farms    learning    combined    critical    generates    team    time    environmental    80    reports    customer   

Project "Trafisense" data sheet

The following table provides information about the project.

Coordinator
TRAFISENSE MONOPROSOPI IDIOTIKI KEFALAIOUCHIKI ETAIREIA 

Organization address
address: DIMOKRATIAS 24
city: VOULA
postcode: 166 73
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Greece [EL]
 Project website https://trafisense.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.3. (SOCIETAL CHALLENGES - Secure, clean and efficient energy)
2. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2017
 Duration (year-month-day) from 2017-02-01   to  2017-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TRAFISENSE MONOPROSOPI IDIOTIKI KEFALAIOUCHIKI ETAIREIA EL (VOULA) coordinator 50˙000.00

Map

 Project objective

Trafisense is a monitoring service for dry-type distribution and power transformers based on proprietary machine-learning technology. Currently only 5% of dry-type power transformers are monitored beyond a very basic set of properties. As a result, owners cannot predict the state of the transformers accurately and face hardware failures and downtime. Even worse, the lack of monitoring prevents identifying the original cause of failure. The last 4 years several hundred datacenters where shut down due to dry transformer failures. 50% of failures and 60% of downtime per year in wind farms correspond to electrical component failures and transformer failures are amongst the most common sources. Additional issues arise in offshore sites due to advanced monitoring requirements. Trafisense offers a combined hardware/software solution for continuous real-time monitoring of dry-type power transformers. We process data feeds from more than 10 electrical and environmental properties to identify the risk status of the hardware and notify the customer of exceptional conditions several days or weeks before they manifest. Trafisense does not just display statistics leaving the deciphering job to the customer. Our service generates detailed actionable insights leading maintenance engineers to the root problem and suggesting specific maintenance actions. In addition to the daily and weekly automated reports, our customers receive semiannual summary reports for each monitored transformer by a team of in-house experts. Initial comparison with standard maintenance practices indicates considerable savings in maintenance cost mainly in offshore installations and onshore remote or critical installations. The reduction of false negatives results to less downtime that translates to fewer disruptions in production. Our proprietary technology generates early warnings regarding high-risk hardware states and it can reduce accidents by 80%.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRAFISENSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TRAFISENSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.3.;H2020-EU.2.1.1.;H2020-EU.2.3.1.)

Horizon (2018)

Cableway based Photovoltaic Retractable Folding Roof for Dual Usage of Spaces

Read More  

SEGE (2017)

Small Efficient Gas Engine

Read More  

Ventura Habitat (2018)

Commercialisation of Ventura Habitat - a novel wind turbine blade maintenance enclosure tomaximize downtime productivity

Read More