Opendata, web and dolomites

microKIc SIGNED

Microscopic Origins of Fracture Toughness

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 microKIc project word cloud

Explore the words cloud of the microKIc project. It provides you a very rough idea of what is the project "microKIc" about.

physics    fracture    dynamics    metals    sufficiently    micromechanical    perform    discrete    model    plasticity    tips    predictive    models    brittle    code    orientation    propagation    arrest    multiscale    framework    micro    dislocation    phenomenological    rate    simulations    first    interactions    tested    precipitates    initiation    semi    crack    safety    specimens    voids    calibration    grain    tip    front    sensitive    finite    validated    cracks    structural    milling    semiconductors    resistant    materials    regarded    varying    atomistic    strain    undoubtedly    3d    nial    guidelines    resistance    refractory    structures    obstacles    coupled    microstructure    macroscopic    mechanistic    beam    components    experimentally    kic    quality    gain    situ    ultimate    experiments    systematically    constituents    nucleation    ion    mesoscale    microstructural    experimental    dependence    boundaries    predict    dislocations    mechanical    steels    criteria    toughness    tests    time    material    mechanics    bcc    microscopic    microkic    temperature   

Project "microKIc" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG 

Organization address
address: SCHLOSSPLATZ 4
city: ERLANGEN
postcode: 91054
website: www.uni-erlangen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙996˙570 €
 EC max contribution 1˙996˙570 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN NUERNBERG DE (ERLANGEN) coordinator 1˙699˙175.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 297˙395.00

Map

 Project objective

The resistance to crack propagation is undoubtedly one of the most important properties of structural materials. However, our current mechanistic understanding of the fracture processes in typical semi-brittle materials like steels, refractory metals or semiconductors is not sufficiently advanced to predict the fracture toughness KIc and its dependence on the microstructure, temperature and strain rate. Therefore, KIc is commonly regarded as a phenomenological material parameter for fracture mechanics models that require experimental calibration.

The aim of microKIc is to study fracture in model materials in order to gain a detailed understanding of the microscopic crack-tip processes during fracture initiation, propagation and arrest, and to systematically study the interactions of cracks with constituents of the microstructure like dislocations, voids, precipitates and grain boundaries. To this end, we will perform fully 3D, large-scale atomistic simulations on cracks in bcc-based materials (W, NiAl) with varying crack orientation, crack front quality, and in the presence of dislocations and microstructural obstacles. The obtained criteria for crack advance and dislocation nucleation at crack tips will be implemented in a coupled finite element - discrete dislocation dynamics code, which will allow for the first time a fully 3D study of fracture and crack-tip plasticity at the mesoscale. The simulations will be compared to in-situ micro-mechanical tests on well-characterized fracture specimens produced by focused ion beam milling.

The ultimate goal of microKIc is to use this experimentally validated multiscale modelling framework to develop a microstructure-sensitive, physics-based micromechanical model of the fracture toughness, which will be tested against macroscopic fracture experiments. Such predictive models are crucial for the development of new failure-resistant materials and for improved design guidelines for safety-relevant structures and components.

 Publications

year authors and title journal last update
List of publications.
2019 Eva I. Preiß, Hao Lyu, Jan P. Liebig, Gunther Richter, Florentina Gannott, Patric A. Gruber, Mathias Göken, Erik Bitzek, Benoit Merle
Microstructural dependence of the fracture toughness of metallic thin films: A bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films
published pages: 3483-3494, ISSN: 0884-2914, DOI: 10.1557/jmr.2019.262
Journal of Materials Research 34/20 2020-01-29
2018 Johannes J. Möller, Erik Bitzek, Rebecca Janisch, Hamad ul Hassan, Alexander Hartmaier
Fracture ab initio: A force-based scaling law for atomistically informed continuum models
published pages: 3750-3761, ISSN: 0884-2914, DOI: 10.1557/jmr.2018.384
Journal of Materials Research 33/22 2019-04-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MICROKIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MICROKIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More