Opendata, web and dolomites

PlasmaCellControl SIGNED

Transcriptional control of plasma cell development and function

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PlasmaCellControl" data sheet

The following table provides information about the project.

Coordinator
FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH 

Organization address
address: CAMPUS-VIENNA-BIOCENTER 1
city: WIEN
postcode: 1030
website: www.imp.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 2˙500˙000 €
 EC max contribution 2˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FORSCHUNGSINSTITUT FUR MOLEKULARE PATHOLOGIE GESELLSCHAFT MBH AT (WIEN) coordinator 2˙500˙000.00

Map

 Project objective

Antibody-secreting cells consisting of short-lived proliferating plasmablasts and long-lived quiescent plasma cells are essential for the acute response to infection and long-term protection of the host against pathogens. Only a few regulators (Blimp1, IRF4, XBP1, Aiolos, Ikaros and E-proteins) have been implicated in the transcriptional control of antibody-secreting cells, and their target genes, with the exception of Blimp1 and E-proteins, are still unknown. This proposal aims to systematically identify key players in the development and function of antibody-secreting cells by using the CRISPR/Cas9 and Cre/loxP methods. For this, we improved existing protocols to extend the duration of in vitro plasmablast differentiation and showed that Rosa26(Cas9/) B cells infected with Blimp1 or Xbp1 sgRNA-expressing retroviruses recapitulated the Blimp1 and Xbp1 mutant phenotypes in this proof-of-principle experiment. Moreover, Cre retrovirus-mediated deletion of Irf4, Ikaros and Aiolos strongly impaired plasmablast differentiation in this optimized system. To discover new regulators of plasma cell differentiation, CRISPR/Cas9-based screens will be performed with pooled sgRNA libraries targeting all known upregulated genes in plasmablasts and plasma cells, followed by individual validation of the best hits. Selected top-ranked genes will be analyzed in vivo by conditional mutagenesis with newly generated, plasma cell-specific Cre lines. Regulated target genes of IRF4, Ikaros, Aiolos, XBP1 and the XBP1-regulated transcription factor Bhlha15 will be identified in plasmablasts by ChIP- and RNA-seq analyses. Target genes with potentially interesting functions will be further characterized by CRISPR/Cas9- or Cre/loxP-mediated mutagenesis. These experiments will provide fundamentally new insight into the molecular mechanisms controlling the development and function of antibody-secreting cells, which are the essential effector cells of humoral immunity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLASMACELLCONTROL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLASMACELLCONTROL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More