Opendata, web and dolomites

NanoStencil SIGNED

Nanoscale self-assembled epitaxial nucleation controlled by interference lithography

Total Cost €


EC-Contrib. €






 NanoStencil project word cloud

Explore the words cloud of the NanoStencil project. It provides you a very rough idea of what is the project "NanoStencil" about.

prior    oxide    capability    nanostructure    pulses    structures    optics    device    biomaterials    metallic    functional    photothermal    self    single    patterning    gained    composition    impacts    light    producing    conventional    demonstrated    generation    principles    quantum    pulsed    transformative    arrays    pitch    achieves    structuring    acts    induce    laser    precise    surfaces    energetically    patterns    overcoming    nanospots    diverse    absorption    interference    material    dense    fractions    inas    dot    metal    regime    molecular    initiate    understand    nanoscale    lasers    sensing    science    concentrated    nanostencil    nucleation    precision    surface    photochemical    reactive    zno    themes    identical    simplicity    semiconductor    paradigm    requirement    technological    photonics    local    modifications    materials    vital    nanowires    modify    shape    potentially    ultrashort    nanostructuring    assembly    limitations    wavelength    size    sites    sio2    reaction    situ    advantages    electronic    ordered    patterned    combining    reactors    nanostructures   

Project "NanoStencil" data sheet

The following table provides information about the project.


Organization address
postcode: S10 2TN

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 3˙208˙740 €
 EC max contribution 3˙208˙740 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-1-2016-2017
 Funding Scheme RIA
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2020-09-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 919˙720.00
4    INNOLAS LASER GMBH DE (KRAILLING) participant 560˙207.00
5    UNIVERSITY OF BEDFORDSHIRE UK (LUTON) participant 546˙875.00
6    TTY-SAATIO FI (TAMPERE) participant 0.00


 Project objective

By overcoming all the limitations of conventional top-down nanostructuring, the NanoStencil project seeks to initiate a new process paradigm for the production of dense arrays of identical nanostructures of precise size, shape and composition. It achieves this by combining the simplicity of structuring with light, with the advantages of molecular self-assembly, to provide a single step, cost effective and state of the art capability for next-generation ordered arrays of nanostructures. New methods to achieve such structures are a vital requirement for the exploitation of devices in the quantum regime. In our approach, laser interference patterning is applied by means of ultrashort pulses to material surfaces at the nanostructure formation phase, where it acts to modify local reaction processes providing energetically favourable sites for the nucleation of self-assembly. The approach is based on some established principles and prior art gained within the consortium, but is yet to be demonstrated at the device scale. To achieve in-situ nanostructuring, precision laser interference optics and state of the art pulsed lasers are integrated within materials reactors producing concentrated light patterns with a pitch of fractions of the laser wavelength which then induce local photothermal or photochemical modifications on the growing surface, creating sites for self-assembly. The science objectives of the project are to develop a comprehensive understanding of the absorption of concentrated pulsed light at the nanoscale to understand how this impacts on a growing or reactive surface. The technological objectives are to demonstrate large scale highly ordered arrays of identical nanostructures within four diverse materials systems (InAs quantum dot arrays, patterned SiO2/metallic nanostructures, ZnO nanowires and functional metal oxide nanospots), each of potentially transformative impact within the themes of semiconductor electronic and photonics, sensing and biomaterials.


List of deliverables.
Interim report on laser interference surface processes Documents, reports 2019-05-16 19:26:23
Laser Prototype 1 Demonstrators, pilots, prototypes 2019-05-16 19:26:23
Website and Project logo established Websites, patent fillings, videos etc. 2019-05-16 19:26:23
Laser interference structuring system implementation plan Documents, reports 2019-05-16 19:26:23

Take a look to the deliverables list in detail:  detailed list of NanoStencil deliverables.


year authors and title journal last update
List of publications.
2018 Wang, Yunran; Jin, Chaoyuan; Hopkinson, Mark
Thermodynamic Processes on a Semiconductor Surface during In-Situ Multi-Beam Laser Interference Patterning
published pages: , ISSN: 1751-8776, DOI: 10.5281/zenodo.1477681
IET Optoelectronics 1 2019-10-08

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOSTENCIL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOSTENCIL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

FLIX (2020)

FLow chemistry for Isotopic eXchange

Read More  

EDRA (2019)

Hardware-Assisted Decoupled Access Execution on the Digital Market: The EDRA Framework

Read More  

Q-AFM (2019)

Quantum Limited Atomic Force Microscopy

Read More