Opendata, web and dolomites

StroMaP SIGNED

Stromal stress networks underlying phenotypic plasticity and tumor fitness

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 StroMaP project word cloud

Explore the words cloud of the StroMaP project. It provides you a very rough idea of what is the project "StroMaP" about.

malignancy    stable    reprogramming    generally    despite    multiplexed    space    leads    aggressiveness    treatments    tf    actionable    overarching    cultures    time    activation    adapt    evolutionary    rewired    hypothesis    massive    orchestrated    mouse    hoemostasis    discover    epigenetic    theory    me    tissue    heterogeneously    genetic    intervention    co    hypothesize    transcription    rewiring    diversity    evolve    tme    patterns    cycles    discovered    phenotypic    transcriptional    patients    microenvironment    cytoprotective    cancer    interrogate    lack    sequencing    map    biology    malignancies    player    landscape    disease    resolution    context    malignant    evolution    implicated    models    aggressive    hsf1    shock    plasticity    reprogrammed    ways    valuable    outcome    tfs    contribution    tradeoffs    patient    signatures    progression    rna    immunofluorescence    mice    view    cell    diverse    complement    vital    first    genomically    nodes    tumors    cells    heterogeneity    stress    stroma    tumor    heat    network    global    single   

Project "StroMaP" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙499˙990 €
 EC max contribution 1˙499˙990 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙499˙990.00

Map

 Project objective

The contribution of genetic and epigenetic changes to rewiring of cancer cells into their malignant state has been much studied. But tumors are more than cancer cells and the tumor microenvironment (TME) is a key player in tumor progression. We lack an overarching view of how, despite being genomically stable, the TME is heterogeneously reprogrammed across time and space to promote evolution of aggressive disease. Recently I discovered that Heat-Shock Factor 1 (HSF1), a cytoprotective transcription factor (TF), is vital to this reprogramming, promoting malignancy in patients and mice upon activation in the stroma. Other stress TFs have also been implicated. This leads me to hypothesize that stress responses help tumors adapt and evolve into aggressive malignancies, by enabling heterogeneity and phenotypic diversity in the TME. This plasticity is achieved through cycles of massive transcriptional rewiring orchestrated by a network of stress TFs. To test this hypothesis in a global way we will proceed in three aims. First we will define patterns of stress response activation in the TME by multiplexed immunofluorescence of patient tumors. Then, we will map the associated transcriptional landscape in patients by RNA-sequencing down to single cell resolution and interrogate it in the context of a novel theory of evolutionary tradeoffs so as to discover signatures that promote tumor aggressiveness. Next, we will identify actionable nodes for intervention and test them in cell co-cultures and mouse models. The expected outcome of the proposed research is a detailed network of stress responses that can explain how the TME is rewired in tumors and how variable this rewiring is. This knowledge will provide new ways to target the TME in order to complement treatments focused on cancer cells. More generally, we address key aspects of stress responses, tissue plasticity, hoemostasis and evolution that are expected to be valuable across diverse fields of biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STROMAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STROMAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More