Opendata, web and dolomites

GLOMODAT SIGNED

Enhancing data fusion, parallelisation for hydrological modelling and estimating sensitivity to spatialparameterization of SWAT to model nitrogen and phosphorus runoff at local and global scale

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GLOMODAT project word cloud

Explore the words cloud of the GLOMODAT project. It provides you a very rough idea of what is the project "GLOMODAT" about.

size    flow    water    load    interface    either    resolution    catchments    automate    dem    pressure    understand    spatial    clusters    impacts    parallelization    coupled    successfully    local    tool    framework    underlying    economy    pollution    published    swat    power    loosely    limitations    entails    partition    hpc    input    demands    becomes    computational    transparently    mpi    land    model    precipitation    partitioning    effort    global    scales    surpass    nutrient    passing    transport    sensitivity    data    estimate    soil    countries    quality    compromised    tightly    landscape    specialised    distributed    types    performance    runoff    too    ways    accessible    computations    calibration    message    causing    diffuse    multiple    datasets    core    balancing    computing    variety    spreading    automated    paradigm    limitation    population    programmed    tested    computers    simulate    nodes    world    computation    mapreduce    put    limited   

Project "GLOMODAT" data sheet

The following table provides information about the project.

Coordinator
TARTU ULIKOOL 

Organization address
address: ULIKOOLI 18
city: TARTU
postcode: 51005
website: www.ut.ee

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Estonia [EE]
 Total cost 148˙582 €
 EC max contribution 148˙582 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TARTU ULIKOOL EE (TARTU) coordinator 148˙582.00

Map

 Project objective

A growing economy and population in the world is causing landscape changes and an increasing pressure is put on water resources. Diffuse water pollution is considered to be one of the major problems for water quality in many countries. Modelling has been successfully used to simulate water quality in catchments to better understand the underlying landscape processes. The widely used Soil and Water Assessment Tool (SWAT) is a spatially distributed model that can be used to estimate flow and nutrient transport at a variety of scales.

In current published studies typically only one or two parameters of precipitation, DEM, land use or soil properties are used in. The proposed project aims to investigate how spatial resolution of core input datasets of all types (precipitation, DEM, land use and soil) impacts SWAT modelling results and estimate the nutrient runoff on a local and global scale.

Sensitivity analysis to all of precipitation, DEM, land use and soil will therefore be tested. The limitation to one or two parameters in current published studies is due to the computational demands. Due to the way the SWAT model is programmed using a tightly coupled Message Passing Interface (MPI) approaches the available computing power needs to accessible within specialised High Performance Computing (HPC) clusters of limited size. Thus, either scale or resolution is typically compromised.

As for higher resolution or global scale data the computational effort becomes too large for automated calibration, we aim to develop a novel method to automate data processing and balancing computational load transparently between many computers.

In order to surpass these limitations we test the MapReduce framework as a novel method for parallelization. This entails new ways of data management, model data partitioning and spreading the model partition computations transparently over multiple computing nodes fostering a loosely coupled distributed computation paradigm.

 Publications

year authors and title journal last update
List of publications.
2019 Kmoch, Alexander
EstSoil-EH v1.0: An eco-hydrological modelling parameters dataset derived from the Soil Map of Estonia - Poster
published pages: , ISSN: , DOI: 10.5281/zenodo.3613441
X Mullapäev (World Soil Day) 2019 2020-03-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLOMODAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLOMODAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

MNSWLGM (2019)

An optofluidic platform based on liquid-gradient refractive index microlens for the isolation and quantification of extracellular vesicles

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More