Opendata, web and dolomites

QSIMCORR SIGNED

Quantum Simulation of Strongly-Correlated Systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QSIMCORR project word cloud

Explore the words cloud of the QSIMCORR project. It provides you a very rough idea of what is the project "QSIMCORR" about.

electron    quantum    exists    employs    optical    superfluid    seek    alternative    insulators    thermodynamic    flux    momentum    lattices    first    scope    stages    language    cluster    supplemented    puzzle    simulation    monte    algorithmic    abelian    refinements    equilibrium    quench    interactions    condensed    calculation    topology    numerical    convergence    sign    combining    improvement    fundamental    realization    thermal    computation    obtain    harbor    localization    experiments    regimes    universal    uniquely    route    extend    phases    local    thermalize    energies    derivations    anyonic    body    entire    disorder    dynamics    exchange    dimensions    diagrammatic    frustrated    rydberg    errors    plasma    vertex    density    computer    excitations    diagrams    fractional    carlo    systematic    simultaneously    correlation    coding    warm    selfenergy    types    competition    answer    chern    correlated    situated    bosonic    theoretical    spin    cold    compute    gases    fermionic    computed    gas    astro    extensions    physics    corrections    dense    analytical    paradigm    limit   

Project "QSIMCORR" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website https://www.theorie.physik.uni-muenchen.de/lsschollwoeck/pollet_group/research_pollet/index.html
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2023-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 2˙000˙000.00

Map

 Project objective

A major challenge in theoretical physics is to develop novel methods without systematic errors. The scope of this proposal is the numerical control over strongly correlated phases in the thermodynamic limit through two main developments: First, for bosonic systems, we aim to obtain reliable phase diagrams for optical flux lattices, combining topology with interactions. In particular, we study the competition between superfluid order and (fractional) Chern insulators, which may harbor (non-)abelian anyonic excitations. This is achieved by a major improvement on our current selfenergy-based cluster methods through non-local interactions, vertex corrections and momentum cluster extensions. This also enables access to out-of-equilibrium dynamics, relevant to study quench-type experiments. In the presence of disorder, we can then answer whether many-body-localization exists in higher dimensions and address the fundamental puzzle of how and when systems thermalize. Second, for fermionic systems with long-range interactions, such as warm dense matter, the electron gas, and cold gases with Rydberg interactions, the diagrammatic Monte Carlo method is uniquely situated to compute thermal exchange correlation energies over the entire density range, essential to any calculation in condensed matter physics, astro physics and plasma physics. It employs a universal language but needs further algorithmic refinements for improving its convergence and sign properties. Extensions are towards (frustrated) spin systems, providing an alternative route to the realization of strongly correlated phases. At all stages analytical derivations must be supplemented with coding and large-scale computation. We address what new types of quantum systems can efficiently be computed on a classical computer, and how. Simultaneously, we seek to extend the paradigm of quantum simulation by comparing the results of our novel methods with cold gas experiments in challenging regimes, where possible.

 Deliverables

List of deliverables.
Data Management Plan Open Research Data Pilot 2019-11-22 12:05:21

Take a look to the deliverables list in detail:  detailed list of QSIMCORR deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 Ke Liu, Jonas Greitemann, Lode Pollet
Learning multiple order parameters with interpretable machines
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.99.104410
Physical Review B 99/10 2019-10-29
2019 Guillaume Salomon, Joannis Koepsell, Jayadev Vijayan, Timon A. Hilker, Jacopo Nespolo, Lode Pollet, Immanuel Bloch, Christian Gross
Direct observation of incommensurate magnetism in Hubbard chains
published pages: 56-60, ISSN: 0028-0836, DOI: 10.1038/s41586-018-0778-7
Nature 565/7737 2019-10-29
2019 Andrey S. Mishchenko, Lode Pollet, Nikolay V. Prokof’ev, Abhishek Kumar, Dmitrii L. Maslov, Naoto Nagaosa
Polaron Mobility in the “Beyond Quasiparticles” Regime
published pages: , ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.123.076601
Physical Review Letters 123/7 2019-10-29
2018 Tobias Pfeffer, Lode Pollet
Full and unbiased solution of the Dyson-Schwinger equation in the functional integro-differential representation
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.98.195104
Physical Review B 98/19 2019-10-29
2018 Lode Pollet, Nikolay V. Prokof\'ev, Boris V. Svistunov
Stochastic lists: Sampling multivariable functions with population methods
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.98.085102
Physical Review B 98/8 2019-10-29
2019 Pramod Kumar, Päivi Törmä, Tuomas I. Vanhala
Magnetization, d -wave superconductivity, and non-Fermi-liquid behavior in a crossover from dispersive to flat bands
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.100.125141
Physical Review B 100/12 2019-10-29
2019 Jonas Greitemann, Ke Liu, Lode Pollet
Probing hidden spin order with interpretable machine learning
published pages: , ISSN: 2469-9950, DOI: 10.1103/physrevb.99.060404
Physical Review B 99/6 2019-10-29
2019 Tobias Pfeffer, Zhiyuan Yao, Lode Pollet
Strong randomness criticality in the scratched XY model
published pages: , ISSN: 2469-9950, DOI: 10.1103/PhysRevB.99.104514
Physical Review B 99/10 2019-10-29

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QSIMCORR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QSIMCORR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QLite (2019)

Quantum Light Enterprise

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More