Opendata, web and dolomites

CRISPR-EVOL SIGNED

The eco-evolutionary costs and benefits of CRISPR-Cas systems, and their effect on genome diversity within populations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CRISPR-EVOL project word cloud

Explore the words cloud of the CRISPR-EVOL project. It provides you a very rough idea of what is the project "CRISPR-EVOL" about.

primarily    exchange    plasmids    acquire    deletions    immune    reveal    anti    inter    recombination    selfish    chromosomes    environment    again    unclear    explore    memory    mating    lineages    alter    lateral    reduces    hypothesis    scope    parasitic    repair    events    evolution    strain    reduce    additional    population    suggest    proteins    genetics    conversely    crispr    contributes    shown    transfer    involvement    supporting    generate    immunity    heritable    evolutionary    quantify    archaea    frequently    genetic    infection    generating    loci    environmental    species    unessential    full    cellular    viral    indicating    diversity    genome    nature    acquired    assumed    incurred    prokaryotes    eco    combined    genomics    roles    acquisition    strains    viruses    dna    avenues    unknown    populations    cells    gene    continual    patterns    induce    outweigh    regarding    exact    experimental    shaping    cas    benefits    defense    replicons    opposite    absence    natural    spacers    impede    diversification    microbial    genomic   

Project "CRISPR-EVOL" data sheet

The following table provides information about the project.

Coordinator
TEL AVIV UNIVERSITY 

Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978
website: http://www.tau.ac.il/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙495˙625 €
 EC max contribution 2˙495˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2023-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 2˙495˙625.00

Map

 Project objective

CRISPR-Cas systems are microbial defense systems that provide prokaryotes with acquired and heritable DNA-based immunity against selfish genetic elements, primarily viruses. However, the full scope of benefits that these systems can provide, as well as their costs remain unknown. Specifically, it is unclear whether the benefits against viral infection outweigh the continual costs incurred even in the absence of parasitic elements, and whether CRISPR-Cas systems affect microbial genome diversity in nature. Since CRISPR-Cas systems can impede lateral gene transfer, it is often assumed that they reduce genetic diversity. Conversely, our recent results suggest the exact opposite: that these systems generate a high level of genomic diversity within populations. We have recently combined genomics of environmental strains and experimental genetics to show that archaea frequently acquire CRISPR immune memory, known as spacers, from chromosomes of related species in the environment. The presence of these spacers reduces gene exchange between lineages, indicating that CRISPR-Cas contributes to diversification. We have also shown that such inter-species mating events induce the acquisition of spacers against a strain's own replicons, supporting a role for CRISPR-Cas systems in generating deletions in natural plasmids and unessential genomic loci, again increasing genome diversity within populations. Here we aim to test our hypothesis that CRISPR-Cas systems increase within-population diversity, and quantify their benefits to both cells and populations, using large-scale genomics and experimental evolution. We will explore how these systems alter the patterns of recombination within and between species, and explore the potential involvement of CRISPR-associated proteins in cellular DNA repair. This work will reveal the eco-evolutionary role of CRISPR-Cas systems in shaping microbial populations, and open new research avenues regarding additional roles beyond anti-viral defense

 Publications

year authors and title journal last update
List of publications.
2019 Israela Turgeman-Grott, Shirley Joseph, Sam Marton, Kim Eizenshtein, Adit Naor, Shannon M. Soucy, Aris-Edda Stachler, Yarden Shalev, Mor Zarkor, Leah Reshef, Neta Altman-Price, Anita Marchfelder, Uri Gophna
Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation
published pages: 177-186, ISSN: 2058-5276, DOI: 10.1038/s41564-018-0302-8
Nature Microbiology 4/1 2020-01-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CRISPR-EVOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CRISPR-EVOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

AncientAdhesives (2019)

Ancient Adhesives - A window on prehistoric technological complexity

Read More  

SERENiTi (2018)

Software Enhanced Research iN Transient kinetics

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More