Opendata, web and dolomites

CRISPR-EVOL SIGNED

The eco-evolutionary costs and benefits of CRISPR-Cas systems, and their effect on genome diversity within populations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CRISPR-EVOL project word cloud

Explore the words cloud of the CRISPR-EVOL project. It provides you a very rough idea of what is the project "CRISPR-EVOL" about.

cellular    lineages    gene    shown    environmental    patterns    unessential    evolution    populations    unknown    acquisition    eco    frequently    outweigh    combined    conversely    prokaryotes    alter    nature    replicons    anti    roles    population    contributes    plasmids    memory    suggest    incurred    avenues    loci    indicating    unclear    involvement    generating    again    full    proteins    regarding    infection    genetics    events    dna    cas    spacers    genome    genomic    microbial    reduces    benefits    mating    shaping    deletions    strain    immunity    exchange    acquired    defense    chromosomes    cells    species    inter    viruses    viral    reveal    immune    diversity    primarily    diversification    opposite    repair    quantify    recombination    exact    archaea    crispr    impede    reduce    selfish    parasitic    genomics    continual    scope    supporting    absence    additional    genetic    experimental    hypothesis    natural    acquire    heritable    transfer    lateral    induce    evolutionary    assumed    environment    strains    generate    explore   

Project "CRISPR-EVOL" data sheet

The following table provides information about the project.

Coordinator
TEL AVIV UNIVERSITY 

Organization address
address: RAMAT AVIV
city: TEL AVIV
postcode: 69978
website: http://www.tau.ac.il/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙495˙625 €
 EC max contribution 2˙495˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2023-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY IL (TEL AVIV) coordinator 2˙495˙625.00

Map

 Project objective

CRISPR-Cas systems are microbial defense systems that provide prokaryotes with acquired and heritable DNA-based immunity against selfish genetic elements, primarily viruses. However, the full scope of benefits that these systems can provide, as well as their costs remain unknown. Specifically, it is unclear whether the benefits against viral infection outweigh the continual costs incurred even in the absence of parasitic elements, and whether CRISPR-Cas systems affect microbial genome diversity in nature. Since CRISPR-Cas systems can impede lateral gene transfer, it is often assumed that they reduce genetic diversity. Conversely, our recent results suggest the exact opposite: that these systems generate a high level of genomic diversity within populations. We have recently combined genomics of environmental strains and experimental genetics to show that archaea frequently acquire CRISPR immune memory, known as spacers, from chromosomes of related species in the environment. The presence of these spacers reduces gene exchange between lineages, indicating that CRISPR-Cas contributes to diversification. We have also shown that such inter-species mating events induce the acquisition of spacers against a strain's own replicons, supporting a role for CRISPR-Cas systems in generating deletions in natural plasmids and unessential genomic loci, again increasing genome diversity within populations. Here we aim to test our hypothesis that CRISPR-Cas systems increase within-population diversity, and quantify their benefits to both cells and populations, using large-scale genomics and experimental evolution. We will explore how these systems alter the patterns of recombination within and between species, and explore the potential involvement of CRISPR-associated proteins in cellular DNA repair. This work will reveal the eco-evolutionary role of CRISPR-Cas systems in shaping microbial populations, and open new research avenues regarding additional roles beyond anti-viral defense

 Publications

year authors and title journal last update
List of publications.
2019 Israela Turgeman-Grott, Shirley Joseph, Sam Marton, Kim Eizenshtein, Adit Naor, Shannon M. Soucy, Aris-Edda Stachler, Yarden Shalev, Mor Zarkor, Leah Reshef, Neta Altman-Price, Anita Marchfelder, Uri Gophna
Pervasive acquisition of CRISPR memory driven by inter-species mating of archaea can limit gene transfer and influence speciation
published pages: 177-186, ISSN: 2058-5276, DOI: 10.1038/s41564-018-0302-8
Nature Microbiology 4/1 2020-01-28

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CRISPR-EVOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CRISPR-EVOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

TRUST (2018)

Truth and Semantics

Read More  

LO-KMOF (2019)

Vapour-deposited metal-organic frameworks as high-performance gap-filling dielectrics for nanoelectronics

Read More