Opendata, web and dolomites

DNAcheck SIGNED

Mechanistic analysis of DNA damage signaling and bypass upon replication of damaged DNA template in human cells.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DNAcheck project word cloud

Explore the words cloud of the DNAcheck project. It provides you a very rough idea of what is the project "DNAcheck" about.

generally    networks    question    serious    helicase    single    triggers    exogenous    attack    gaps    prevent    multidisciplinary    gap    stability    endogenous    uncoupling    template    unexplored    postreplicative    conserved    light    synthesis    templates    polymerase    molecular    repair    genome    left    machinery    sensed    priming    cells    breakage    stalling    exonuclease    switching    lesions    yeast    damage    movement    downstream    seems    site    fork    stalled    encounters    complete    damaged    originated    poorly    fundamental    dna    pcna    actually    activation    checkpoint    association    mechanisms    replicative    exo1    replication    re    found    extended    signal    leads    either    sources    arises    forks    stranded    remaining    disease    predominant    sense    restricted    humans    interestingly    hence    function    lagging    human    budding    scenario    clear    strand    ssdna    global    accumulate    genetic    encoded    signaling    shed    constitute    employ    assumed    mechanism    bypass    constant   

Project "DNAcheck" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD DE SEVILLA 

Organization address
address: CALLE S. FERNANDO 4
city: SEVILLA
postcode: 41004
website: www.us.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 170˙121 €
 EC max contribution 170˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD DE SEVILLA ES (SEVILLA) coordinator 170˙121.00

Map

 Project objective

The genetic information encoded by DNA is under constant attack from both endogenous and exogenous sources of damage. To ensure genome stability and prevent disease, cells use global signaling networks to sense and repair DNA damage. One particularly serious problem is when the replication machinery encounters lesions remaining in the template DNA. In this scenario, cells employ damage bypass mechanisms to complete genome replication and prevent fork breakage. Importantly, these pathways are not restricted to the site of stalling but can also function behind the fork at single-stranded DNA (ssDNA) gaps originated by the re-priming of DNA synthesis downstream of lesions. While it is very well known that ssDNA is the molecular signal that triggers the checkpoint response, it is less clear how and where ssDNA actually arises. Generally, it is assumed to accumulate at stalled replication forks, either by an uncoupling between replicative helicase and polymerase movement or between leading and lagging strand synthesis. However, in a recent study in budding yeast, I found that ssDNA gaps left behind replication forks, and extended by processing factors such as the exonuclease EXO1, constitute the predominant signal that leads to checkpoint activation in response to damaged DNA templates during S phase. Whether this mechanism of checkpoint activation is conserved from yeast to humans remains unexplored. Hence, using a unique set of multidisciplinary approaches, this project aims to address the fundamental question of how DNA damage is sensed during replication in human cells. Interestingly, not only ssDNA gap processing seems important for checkpoint signaling but also for the template switching mechanism of damage bypass. Therefore, this project will also study the function of EXO1 and its association with PCNA at postreplicative ssDNA gaps in order to shed light on the poorly understood mechanism of template switching.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DNACHECK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DNACHECK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COLEX (2019)

Coopetition and Legislation in the Spanish Netherlands (1598-1665)

Read More  

CORRELATION (2020)

Characterization and prediction of service-level traffic for future sliced mobile network

Read More  

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More