Opendata, web and dolomites

ProCenDecl SIGNED

Synthesis and validation of chemical Probes for Centrosome Declustering: development of potent and selective anti-cancer agents.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ProCenDecl project word cloud

Explore the words cloud of the ProCenDecl project. It provides you a very rough idea of what is the project "ProCenDecl" about.

prevention    adp    specificity    family    mitotic    parps    mode    cells    photoaffinity    provides    uneven    copies    organelles    clustering    point    division    spindles    ligation    form    ribose    polimerase    discovery    enzyme    tankyrase    cancer    microtubules    az0108    poly    consequent    multipolar    mechanism    sar    tnks1    inhibitor    exploited    centrosome    starting    reports    responsible    segregation    orally    declustering    synthesize    astrazeneca    ribosylation    completely    centrosomes    leads    first    acquired    bipolar    inhibit    daughter    survival    tumor    az9482    led    biorthogonal    compound    chromosomes    inhibitors    organization    pseudo    contrary    seems    potent    library    tools    selective    tendency    extensive    derivative    extra    conjugation    investigation    normal    polymerase    potently    advantage    series    technologies    spindle    action    proteomics    cell    accumulate    catastrophe    employed    16    aberrant    anti    chemical    phtalazinone    drugs    druggability    parp   

Project "ProCenDecl" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Cancer cells have the tendency to accumulate extra copies of centrosomes, organelles responsible for the microtubules' organization during cell division. In normal cells, an aberrant number of centrosomes leads to the formation of multipolar spindles, uneven segregation of chromosomes between daughter cells and consequent mitotic catastrophe. On the contrary, cancer cells are able to form a pseudo-bipolar mitotic spindle by a process called centrosome clustering, which provides survival advantage for tumor cells. The specificity of this process can be exploited as a potential novel target for the development of highly selective anti-cancer drugs. The mechanism of centrosome clustering is not completely understood. Particularly, from recent reports it seems that ADP ribosylation factors tankyrase (TNKS1) and ADP-ribose polimerase 16 (PARP-16) have a significant role in the prevention of multipolar spindle formation. Based on these findings and the already druggability of poly (ADP-ribose) polymerase (PARP) enzyme family, a SAR study on phtalazinone PARP inhibitors from AstraZeneca's compound library was carried out. This study led to the discovery of AZ9482, a potent inhibitor of centrosome clustering, and AZ0108 an orally available derivative that is able to potently inhibit PARPs 1/2/6. AZ9482 as well as AZ0108 can be used as a starting point to design and synthesize a first series of chemical proteomics tools, that will allow an extensive investigation of the centrosome declustering mechanism. All currently available technologies in the field of target discovery will be employed, including photoaffinity ligation and biorthogonal conjugation. The acquired knowledge can be used to design novel highly specific and potent anti-cancer drugs that inhibit centrosome clustering with a specific mode of action.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROCENDECL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROCENDECL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More