Opendata, web and dolomites

QuESt SIGNED

Quantum Enhanced Organic Photovoltaics by Strong Coupling of IR Vibrations to an Optical Cavity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "QuESt" data sheet

The following table provides information about the project.

Coordinator
SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE 

Organization address
address: VIA BONOMEA 265
city: TRIESTE
postcode: 34136
website: www.sissa.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 262˙269 €
 EC max contribution 262˙269 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-GF
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2022-04-21

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE IT (TRIESTE) coordinator 262˙269.00
2    TRUSTEES OF PRINCETON UNIVERSITY US (PRINCETON, NJ) partner 0.00

Map

 Project objective

In the quest for solar cell technologies, organic photovoltaics (OPVs) are playing a leading role as a potentially cost-effective and clean solution. Thus, much research has been devoted into increasing power conversion efficiencies (PCE), currently ~10% by optimising material properties at the different steps involved in the conversion of light into charge. There is evidence that charge delocalization and hot charge transfer (CT) states facilitate charge separation at the electron donor/acceptor interface. State-of-the-art OPVs already exhibit very high (>90%) internal quantum efficiencies (IQE). However, PCE relies not only on high IQE but also on minimizing energy loses (e.g. exciton relaxation) and avoiding charge recombination. A possible strategy to increase PCE is to find ways to optimise charge separation that allow simultaneously for high quantum efficiencies and architectures with longer exciton diffusion lengths or lower charge recombination rates. In QuESt we will investigate how to enhance OPV functionality by the emerging approach of modifying material properties through the hybridization of matter and photon states under strong light matter coupling. In particular, the aim of this project is to modify charge separation and eventually PCE in OPVs by engineering strong coupling between IR molecular vibrations and an optical cavity mode. We will develop a theoretical framework to describe the energy structure and charge dynamics in OPVs under strong vibrational coupling that will be benchmarked with non-linear spectroscopy experiments.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUEST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUEST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

HaLO (2019)

How Language Oppresses

Read More  

PUNISH (2019)

Punishment as Communication: Transgressors’ Interpretation and Understanding of Punishment

Read More  

LaBRhythms (2019)

Language and Brain Rhythms

Read More