Opendata, web and dolomites

DEEPEN SIGNED

Deciphering deep architectures underlying structured perception in auditory networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DEEPEN project word cloud

Explore the words cloud of the DEEPEN project. It provides you a very rough idea of what is the project "DEEPEN" about.

deep    local    auditory    constrained    connections    recursively    artificial    platform    model    contribution    perturbed    machine    neural    function    objects    emergence    mathematical    interareal    follows    generation    structures    link    networks    structural    technologies    theoretical    leaning    neurons    fuel    learning    sensory    techniques    emerge    chemogenetically    experimental    encoded    optical    computational    models    free    puzzle    density    operations    perturbation    fail    recording    nonlinearities    genetically    opto    difficulty    data    tagged    combining    recoding    awake    categories    structured    feedback    population    assays    brain    animals    framework    precise    series    electrophysiological    stages    poorly    fundamental    functional    approximated    perceptual    effortlessly    recurrently    behavioural    emerges    connected    throughput    principles    output    starting    shapes    mouse    biologically    serving    missing    extract    derive    predictive    nonlinear    tactile    perception    suggested   

Project "DEEPEN" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙983˙886 €
 EC max contribution 1˙983˙886 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙983˙886.00

Map

 Project objective

The principles of sensory perception are still a large experimental and theoretical puzzle. A strong difficulty is that perception emerges from networks of recurrently connected brain areas whose activity and function are poorly approximated by current generic mathematical models. These models also fail to explain many of the fundamental structures effortlessly identified by the brain (shapes, objects, auditory or tactile categories). I here propose to establish a new approach combining high-throughput population recoding methods with a tailored theoretical framework to derive computational principles operating throughout sensory systems and leading to biologically structured perception. This approach follows on the recent mathematical proposal, suggested by Deep Machine Learning methods, that complex perceptual objects emerge through series of simple nonlinear operations combining increasingly complex sensory features along the sensory pathways. Starting with the mouse auditory system as a model pathway, we will recursively extract, with model-free methods, the main nonlinear sensory features encoded in genetically tagged output and local neurons at different processing stages, using optical and electrophysiological high density recording techniques in awake animals. The role of these features in perception will be identified with behavioural assays. Specific intra- and interareal feedback connections, typically not included in Deep Leaning models, will be opto- and chemogenetically perturbed to assess their contribution to precise nonlinearities of the system and their role in the emergence of complex perceptual structures. Based on these structural, functional and perturbation data, a new generation of well-constrained and predictive sensory processing models will be built, serving as a platform to extract general computational principles missing to link neural activity to perception and to fuel artificial neural networks technologies.

 Publications

year authors and title journal last update
List of publications.
2019 Thomas Deneux, Evan R Harrell, Alexandre Kempf, Sebastian Ceballo, Anton Filipchuk, Brice Bathellier
Context-dependent signaling of coincident auditory and visual events in primary visual cortex
published pages: , ISSN: 2050-084X, DOI: 10.7554/elife.44006
eLife 8 2020-04-15
2019 Sebastian Ceballo, Jacques Bourg, Alexandre Kempf, Zuzanna Piwkowska, Aurélie Daret, Pierre Pinson, Thomas Deneux, Simon Rumpel, Brice Bathellier
Cortical recruitment determines learning dynamics and strategy
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-019-09450-0
Nature Communications 10/1 2020-04-15
2019 Sebastian Ceballo, Zuzanna Piwkowska, Jacques Bourg, Aurélie Daret, Brice Bathellier
Targeted Cortical Manipulation of Auditory Perception
published pages: 1168-1179.e5, ISSN: 0896-6273, DOI: 10.1016/j.neuron.2019.09.043
Neuron 104/6 2020-04-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEPEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEPEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More  

AST (2019)

Automatic System Testing

Read More