Opendata, web and dolomites

DEEPEN SIGNED

Deciphering deep architectures underlying structured perception in auditory networks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DEEPEN project word cloud

Explore the words cloud of the DEEPEN project. It provides you a very rough idea of what is the project "DEEPEN" about.

effortlessly    theoretical    awake    serving    fail    perceptual    behavioural    nonlinearities    structures    artificial    neural    tagged    puzzle    biologically    operations    series    emerges    stages    structural    population    framework    missing    local    follows    connected    connections    computational    animals    combining    interareal    networks    optical    tactile    recursively    approximated    functional    categories    starting    electrophysiological    genetically    fundamental    opto    assays    link    auditory    learning    function    experimental    leaning    perturbation    shapes    mathematical    fuel    difficulty    principles    nonlinear    output    free    recoding    data    predictive    technologies    derive    techniques    constrained    recurrently    throughput    perception    structured    encoded    generation    models    density    chemogenetically    contribution    neurons    sensory    objects    machine    feedback    brain    suggested    mouse    emergence    extract    perturbed    platform    emerge    poorly    precise    recording    deep    model   

Project "DEEPEN" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙983˙886 €
 EC max contribution 1˙983˙886 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙983˙886.00

Map

 Project objective

The principles of sensory perception are still a large experimental and theoretical puzzle. A strong difficulty is that perception emerges from networks of recurrently connected brain areas whose activity and function are poorly approximated by current generic mathematical models. These models also fail to explain many of the fundamental structures effortlessly identified by the brain (shapes, objects, auditory or tactile categories). I here propose to establish a new approach combining high-throughput population recoding methods with a tailored theoretical framework to derive computational principles operating throughout sensory systems and leading to biologically structured perception. This approach follows on the recent mathematical proposal, suggested by Deep Machine Learning methods, that complex perceptual objects emerge through series of simple nonlinear operations combining increasingly complex sensory features along the sensory pathways. Starting with the mouse auditory system as a model pathway, we will recursively extract, with model-free methods, the main nonlinear sensory features encoded in genetically tagged output and local neurons at different processing stages, using optical and electrophysiological high density recording techniques in awake animals. The role of these features in perception will be identified with behavioural assays. Specific intra- and interareal feedback connections, typically not included in Deep Leaning models, will be opto- and chemogenetically perturbed to assess their contribution to precise nonlinearities of the system and their role in the emergence of complex perceptual structures. Based on these structural, functional and perturbation data, a new generation of well-constrained and predictive sensory processing models will be built, serving as a platform to extract general computational principles missing to link neural activity to perception and to fuel artificial neural networks technologies.

 Publications

year authors and title journal last update
List of publications.
2019 Thomas Deneux, Evan R Harrell, Alexandre Kempf, Sebastian Ceballo, Anton Filipchuk, Brice Bathellier
Context-dependent signaling of coincident auditory and visual events in primary visual cortex
published pages: , ISSN: 2050-084X, DOI: 10.7554/elife.44006
eLife 8 2020-04-15
2019 Sebastian Ceballo, Jacques Bourg, Alexandre Kempf, Zuzanna Piwkowska, Aurélie Daret, Pierre Pinson, Thomas Deneux, Simon Rumpel, Brice Bathellier
Cortical recruitment determines learning dynamics and strategy
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-019-09450-0
Nature Communications 10/1 2020-04-15
2019 Sebastian Ceballo, Zuzanna Piwkowska, Jacques Bourg, Aurélie Daret, Brice Bathellier
Targeted Cortical Manipulation of Auditory Perception
published pages: 1168-1179.e5, ISSN: 0896-6273, DOI: 10.1016/j.neuron.2019.09.043
Neuron 104/6 2020-04-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEPEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEPEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

TRUST (2018)

Truth and Semantics

Read More