Opendata, web and dolomites

Self-Control SIGNED

Interplay between genetic control and self-organization during embryo morphogenesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Self-Control project word cloud

Explore the words cloud of the Self-Control project. It provides you a very rough idea of what is the project "Self-Control" about.

interactions    actomyosin    chemical    multicellular    asymmetries    morphogenetic    effect    3d    networks    pulses    mechanics    patterning    perturbations    local    mediated    contractile    regulated    molecular    poorly    time    explained    legacies    description    genetic    unravel    acquire    biological    tissues    cellular    understand    flows    drosophila    live    theoretical    controls    trigger    upstream    invagination    waves    contribution    computational    geometric    reported    optogenetic    embryos    morphogenesis    basal    contractility    ask    variety    mechano    patterns    interplay    accounted    behaviors    shed    curvature    combining    model    intertwined    endoderm    explains    flow    feedback    drive    explore    underlying    mechanical    nature    emerge    interdisciplinary    shape    conceptual    physical    dynamics    light    emergence    wave    positional    mechanism    developmental    cells    newly    biochemical    geometrical    imaging    framework    space    organization    spatial    parallel    coupling    self    geometry    occurring    tissue    apical    capturing    cell    amplifying   

Project "Self-Control" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙862˙571 €
 EC max contribution 2˙862˙571 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 2˙862˙571.00

Map

 Project objective

Morphogenesis seeks to understand how information and mechanics emerge from molecular interactions and how they are regulated in space and time. Two parallel legacies are now intertwined: the conceptual framework of developmental patterning that explains how cells acquire positional information during development and control cell behaviors, and the description of biological processes in physical terms. The current framework explains how genetic and biochemical information controls cellular mechanics, in particular contractility mediated by actomyosin networks, and thus cell and tissue shape changes. However, newly reported contractile dynamics, namely pulses, flows and waves, cannot be explained in this framework: they are self-organized in that they depend on local mechano-chemical interactions and feedback that cannot be accounted for by upstream genetic control. This project will explore the interplay between genetic control and self-organization in Drosophila embryos. We will study the emergence of multicellular flow and the mechanism of newly characterized tissue-level trigger wave dynamics associated with endoderm invagination, a poorly studied process. We will ask: 1) how do patterns of apical and basal contractility drive cell dynamics; 2) what is the contribution of geometrical feedback, e.g. tissue curvature, in amplifying the effect of contractile asymmetries; and 3) what is the nature of mechanical feedback and cell spatial coupling underlying trigger wave dynamics in the tissue? We will use an interdisciplinary approach, combining live imaging, capturing the 3D shape of cells/tissues, genetic/optogenetic/mechanical perturbations and theoretical/computational methods to model mechanics and geometry. We expect to unravel how organized multicellular dynamics emerge from genetic, mechanical and geometric “information”, and feedback during morphogenesis. This work will shed new light on a variety of morphogenetic processes occurring during development.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SELF-CONTROL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SELF-CONTROL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

OSIRIS (2020)

Automatic measurement of speech understanding using EEG

Read More  

NEUTRAMENTH (2018)

A redox-neutral process for the cost-efficient and environmentally friendly production of Menthol

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More