Opendata, web and dolomites


Macroscopic Behavior of Many-Body Quantum Systems

Total Cost €


EC-Contrib. €






 MaMBoQ project word cloud

Explore the words cloud of the MaMBoQ project. It provides you a very rough idea of what is the project "MaMBoQ" about.

neglecting    spin    simplified    fermions    systems    theme    effect    topological    share    emergent    interacting    progress    physics    devoted    enormous    lot    gross    rigorous    equilibrium    dynamics    validate    deal    last    interactions    regimes    transport    understand    proving    formal    macroscopic    scaling    insulators    rigorously    evolution    18    samples    bosons    pitaevskii    attracted    boltzmann    fock    derivation    suitable    hartree    equation    principles    solvable    models    conduction    body    uncontrolled    charge    numerical    central    fill    mathematical    celebrated    universality    expansions    rely    energy    remarkable    first    physicists    equations    quantum    exactly    materials    parts    divided    behavior    2d    condensed    bcs    mappings    theories    capturing    theory    graphene    lattice    emergence    fermionic    approximations    mathematically    validity    electrons    mean    explained    gap    kinetic    interact    phenomenon   

Project "MaMBoQ" data sheet

The following table provides information about the project.


Organization address
postcode: 72074

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 982˙625 €
 EC max contribution 982˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

This project is devoted to the analysis of large quantum systems. It is divided in two parts: Part A focuses on the transport properties of interacting lattice models, while Part B concerns the derivation of effective evolution equations for many-body quantum systems. The common theme is the concept of emergent effective theory: simplified models capturing the macroscopic behavior of complex systems. Different systems might share the same effective theory, a phenomenon called universality. A central goal of mathematical physics is to validate these approximations, and to understand the emergence of universality from first principles.

Part A: Transport in interacting condensed matter systems. I will study charge and spin transport in 2d systems, such as graphene and topological insulators. These materials attracted enormous interest, because of their remarkable conduction properties. Neglecting many-body interactions, some of these properties can be explained mathematically. In real samples, however, electrons do interact. In order to deal with such complex systems, physicists often rely on uncontrolled expansions, numerical methods, or formal mappings in exactly solvable models. The goal is to rigorously understand the effect of many-body interactions, and to explain the emergence of universality.

Part B: Effective dynamics of interacting fermionic systems. I will work on the derivation of effective theories for interacting fermions, in suitable scaling regimes. In the last 18 years, there has been great progress on the rigorous validity of celebrated effective models, e.g. Hartree and Gross-Pitaevskii theory. A lot is known for interacting bosons, for the dynamics and for the equilibrium low energy properties. Much less is known for fermions. The goal is fill the gap by proving the validity of some well-known fermionic effective theories, such as Hartree-Fock and BCS theory in the mean-field scaling, and the quantum Boltzmann equation in the kinetic scaling.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAMBOQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAMBOQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Power of Randomness and Continuity in Submodular Optimization

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More  

HBPTC (2019)

Hydrogen Bonding Phase Transfer Catalysis

Read More