Opendata, web and dolomites


Macroscopic Behavior of Many-Body Quantum Systems

Total Cost €


EC-Contrib. €






 MaMBoQ project word cloud

Explore the words cloud of the MaMBoQ project. It provides you a very rough idea of what is the project "MaMBoQ" about.

equilibrium    principles    transport    rigorously    graphene    rely    enormous    exactly    parts    numerical    celebrated    topological    fermions    bosons    proving    last    derivation    lattice    energy    theories    hartree    electrons    universality    effect    share    gross    devoted    remarkable    theme    mappings    phenomenon    behavior    quantum    evolution    deal    systems    rigorous    central    interactions    dynamics    condensed    interacting    lot    divided    fermionic    bcs    macroscopic    regimes    uncontrolled    validate    emergence    spin    samples    insulators    approximations    fill    attracted    simplified    fock    interact    pitaevskii    models    validity    solvable    physicists    neglecting    equations    formal    materials    progress    18    gap    mathematically    equation    suitable    theory    expansions    charge    mathematical    understand    2d    scaling    boltzmann    mean    conduction    physics    first    capturing    kinetic    explained    emergent    body   

Project "MaMBoQ" data sheet

The following table provides information about the project.


Organization address
postcode: 72074

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 982˙625 €
 EC max contribution 982˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

This project is devoted to the analysis of large quantum systems. It is divided in two parts: Part A focuses on the transport properties of interacting lattice models, while Part B concerns the derivation of effective evolution equations for many-body quantum systems. The common theme is the concept of emergent effective theory: simplified models capturing the macroscopic behavior of complex systems. Different systems might share the same effective theory, a phenomenon called universality. A central goal of mathematical physics is to validate these approximations, and to understand the emergence of universality from first principles.

Part A: Transport in interacting condensed matter systems. I will study charge and spin transport in 2d systems, such as graphene and topological insulators. These materials attracted enormous interest, because of their remarkable conduction properties. Neglecting many-body interactions, some of these properties can be explained mathematically. In real samples, however, electrons do interact. In order to deal with such complex systems, physicists often rely on uncontrolled expansions, numerical methods, or formal mappings in exactly solvable models. The goal is to rigorously understand the effect of many-body interactions, and to explain the emergence of universality.

Part B: Effective dynamics of interacting fermionic systems. I will work on the derivation of effective theories for interacting fermions, in suitable scaling regimes. In the last 18 years, there has been great progress on the rigorous validity of celebrated effective models, e.g. Hartree and Gross-Pitaevskii theory. A lot is known for interacting bosons, for the dynamics and for the equilibrium low energy properties. Much less is known for fermions. The goal is fill the gap by proving the validity of some well-known fermionic effective theories, such as Hartree-Fock and BCS theory in the mean-field scaling, and the quantum Boltzmann equation in the kinetic scaling.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAMBOQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAMBOQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

UTOPEST (2019)

Unified Theory of Efficient Optimization and Estimation

Read More  

Meiotic telomere (2019)

Study of telomere function in germ cells, relevant to the regulations of homologous recombination and telomere length maintenance across generations

Read More