Opendata, web and dolomites

MaMBoQ SIGNED

Macroscopic Behavior of Many-Body Quantum Systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MaMBoQ project word cloud

Explore the words cloud of the MaMBoQ project. It provides you a very rough idea of what is the project "MaMBoQ" about.

topological    condensed    capturing    fermions    electrons    uncontrolled    theories    equilibrium    fermionic    insulators    mathematical    interacting    fock    equation    boltzmann    universality    interact    emergent    understand    parts    explained    physics    numerical    lattice    bcs    rigorously    last    share    bosons    materials    pitaevskii    neglecting    body    regimes    graphene    celebrated    scaling    remarkable    18    hartree    first    spin    effect    quantum    deal    devoted    systems    samples    mappings    lot    2d    suitable    energy    divided    approximations    formal    kinetic    fill    dynamics    rigorous    physicists    equations    evolution    validate    theory    simplified    solvable    gross    conduction    theme    validity    macroscopic    mathematically    attracted    proving    expansions    mean    principles    interactions    emergence    gap    transport    derivation    exactly    progress    charge    models    rely    phenomenon    enormous    behavior    central   

Project "MaMBoQ" data sheet

The following table provides information about the project.

Coordinator
EBERHARD KARLS UNIVERSITAET TUEBINGEN 

Organization address
address: GESCHWISTER-SCHOLL-PLATZ
city: TUEBINGEN
postcode: 72074
website: www.uni-tuebingen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 982˙625 €
 EC max contribution 982˙625 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EBERHARD KARLS UNIVERSITAET TUEBINGEN DE (TUEBINGEN) coordinator 982˙625.00

Map

 Project objective

This project is devoted to the analysis of large quantum systems. It is divided in two parts: Part A focuses on the transport properties of interacting lattice models, while Part B concerns the derivation of effective evolution equations for many-body quantum systems. The common theme is the concept of emergent effective theory: simplified models capturing the macroscopic behavior of complex systems. Different systems might share the same effective theory, a phenomenon called universality. A central goal of mathematical physics is to validate these approximations, and to understand the emergence of universality from first principles.

Part A: Transport in interacting condensed matter systems. I will study charge and spin transport in 2d systems, such as graphene and topological insulators. These materials attracted enormous interest, because of their remarkable conduction properties. Neglecting many-body interactions, some of these properties can be explained mathematically. In real samples, however, electrons do interact. In order to deal with such complex systems, physicists often rely on uncontrolled expansions, numerical methods, or formal mappings in exactly solvable models. The goal is to rigorously understand the effect of many-body interactions, and to explain the emergence of universality.

Part B: Effective dynamics of interacting fermionic systems. I will work on the derivation of effective theories for interacting fermions, in suitable scaling regimes. In the last 18 years, there has been great progress on the rigorous validity of celebrated effective models, e.g. Hartree and Gross-Pitaevskii theory. A lot is known for interacting bosons, for the dynamics and for the equilibrium low energy properties. Much less is known for fermions. The goal is fill the gap by proving the validity of some well-known fermionic effective theories, such as Hartree-Fock and BCS theory in the mean-field scaling, and the quantum Boltzmann equation in the kinetic scaling.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAMBOQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAMBOQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More