Opendata, web and dolomites

sEEIngDOM SIGNED

Ecological and Evolutionary Importance of Molecular Diversity in Dissolved Organic Matter

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "sEEIngDOM" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙499˙169 €
 EC max contribution 1˙499˙169 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙499˙169.00

Map

 Project objective

Dissolved organic matter (DOM) is central to the functioning of freshwater ecosystems that support life on Earth. For example, DOM has a major role in global carbon (C) cycling by helping to bury four times more C in the bottom of lakes and rivers than across all of the world’s oceans. DOM also majorly influences the growth of aquatic organisms and impedes drinking water treatment for millions of people, such as by increasing microbial growth. Yet, despite its importance, DOM remains poorly understood because it has been measured with little resolution for nearly 200 years. Recent technological advances have now shown that a handful of lake water can contain thousands of different molecules of varying origin and composition. But the role of all these different molecules in aquatic ecosystems largely remains a mystery. This project will discover the importance of the tremendous diversity of molecules – termed chemodiversity – found in DOM for lake functioning and human wellbeing. It will do so by combining cutting-edge techniques in analytical chemistry, genomics, and statistical modelling with careful lab-based studies, proven field experiments, and large-scale observational surveys. By thinking about species of molecules as we would species of organisms, this project will draw upon rich theory and methods developed for the study of biodiversity. The work will allow us to learn how variation in chemodiversity across lakes is driven by associations with different microbes and how these microbes reciprocally adapt and evolve to different DOM. In the process, we will improve predictions of how important functions and services provided by lakes, such as C cycling and drinking water, vary with chemodiversity. An exciting application of this work is to improve emerging technologies for water purification by identifying microbial consortia that can consume chemodiversity and make water clearer.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SEEINGDOM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SEEINGDOM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

FICOMOL (2019)

Field Control of Cold Molecular Collisions

Read More