Opendata, web and dolomites

PATHWISE SIGNED

Pathwise methods and stochastic calculus in the path towards understanding high-dimensional phenomena

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PATHWISE project word cloud

Explore the words cloud of the PATHWISE project. It provides you a very rough idea of what is the project "PATHWISE" about.

questions    pathwise    geometry    associate    limit    mean    entropic    inequalities    originating    jumps    few    lov    gaussian    kernel    concentration    object    variance    deviations    distributions    kls    statistics    asz    bodies    minkowski    corresponding    tractable    brunn    kannan    behavior    particle    quantitative    progress    managed    adjacent    connections    symbiosis    isoperimetric    mass    convexity    latter    dimension    hypercontractivity    concepts    first    central    simonovits    calculus       robustness    free    former    explore    thereof    semigroup    hypercube    relies    inequality    computer    interacting    coauthors    tools    regularization    nonlinear    noise    conjecture    hyperplane    rely    entropy    science    boolean    versions    quantities    conjectures    heat    works    stability    ideas    extend    transportation    regarding    convex    introduction    gibbs    bounds    space    play    stochastic    theory    phenomena    dimensional    networks    probability    mathematics    notions    theorems   

Project "PATHWISE" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙308˙188 €
 EC max contribution 1˙308˙188 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙308˙188.00

Map

 Project objective

Concepts from the theory of high-dimensional phenomena play a role in several areas of mathematics, statistics and computer science. Many results in this theory rely on tools and ideas originating in adjacent fields, such as transportation of measure, semigroup theory and potential theory. In recent years, a new symbiosis with the theory of stochastic calculus is emerging.

In a few recent works, by developing a novel approach of pathwise analysis, my coauthors and I managed to make progress in several central high-dimensional problems. This emerging method relies on the introduction of a stochastic process which allows one to associate quantities and properties related to the high-dimensional object of interest to corresponding notions in stochastic calculus, thus making the former tractable through the analysis of the latter.

We propose to extend this approach towards several long-standing open problems in high dimensional probability and geometry. First, we aim to explore the role of convexity in concentration inequalities, focusing on three central conjectures regarding the distribution of mass on high dimensional convex bodies: the Kannan-Lov'asz-Simonovits (KLS) conjecture, the variance conjecture and the hyperplane conjecture as well as emerging connections with quantitative central limit theorems, entropic jumps and stability bounds for the Brunn-Minkowski inequality. Second, we are interested in dimension-free inequalities in Gaussian space and on the Boolean hypercube: isoperimetric and noise-stability inequalities and robustness thereof, transportation-entropy and concentration inequalities, regularization properties of the heat-kernel and L_1 versions of hypercontractivity. Finally, we are interested in developing new methods for the analysis of Gibbs distributions with a mean-field behavior, related to the new theory of nonlinear large deviations, and towards questions regarding interacting particle systems and the analysis of large networks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PATHWISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PATHWISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More