Opendata, web and dolomites

AutoCPS SIGNED

Automated Synthesis of Cyber-Physical Systems: A Compositional Approach

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AutoCPS project word cloud

Explore the words cloud of the AutoCPS project. It provides you a very rough idea of what is the project "AutoCPS" about.

disciplines    automated    hardware    hoc    prone    successful    networks    guarantee    engineering    theorems    running    rules    guaranteeing    braking    separate    computation    safety    innovative    decomposition    distributed    modern    power    tightly    complexity    correctness    independent    communication    ubiquitous    core    vehicles    aerospace    science    forms    gain    transportation    interacting    theory    embedded    fundamental    reducing    breaking    semi    dynamics    tools    thinking    steering    either    assume    physical    error    protocol    rapid    unnecessary    manner    plays    details    cps    till    considerably    stability    ad    tackle    leverage    re    memory    risk    components    conventional    push    computer    software    compositional    interact    critical    parts    button    examples    formal    reduce    abstraction    autonomous    synthesized    object    eliminating    methodology    works    combining    correctly    instance    small    aggregating    techniques    cyber    synthesis   

Project "AutoCPS" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙470˙800 €
 EC max contribution 1˙470˙800 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 1˙470˙800.00

Map

 Project objective

Embedded Control software plays a critical role in many safety-critical applications. For instance, modern vehicles use interacting software and hardware components to control steering and braking. Control software forms the main core of autonomous transportation, power networks, and aerospace. These applications are examples of cyber-physical systems (CPS), where distributed software systems interact tightly with spatially distributed physical systems with complex dynamics. CPS are becoming ubiquitous due to rapid advances in computation, communication, and memory. However, the development of core control software running in these systems is still ad hoc and error-prone and much of the engineering costs today go into ensuring that control software works correctly.

In order to reduce the design costs and guaranteeing its correctness, I aim to develop an innovative design process, in which the embedded control software is synthesized from high-level correctness requirements in a push-button and formal manner. Requirements for modern CPS applications go beyond conventional properties in control theory (e.g. stability) and in computer science (e.g. protocol design). Here, I propose a compositional methodology for automated synthesis of control software by combining compositional techniques from computer science (e.g. assume-guarantee rules) with those from control theory (e.g. small-gain theorems). I will leverage decomposition and abstraction as two key tools to tackle the design complexity, by either breaking the design object into semi-independent parts or by aggregating components and eliminating unnecessary details. My project is high-risk because it requires a fundamental re-thinking of design techniques till now studied in separate disciplines. It is high-gain because a successful method for automated synthesis of control software will make it finally possible to develop complex yet reliable CPS applications while considerably reducing the engineering cost.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AUTOCPS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AUTOCPS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

SPECTRODOT (2018)

Hand-held broadband hybrid graphene-quantum dots spectrometer

Read More