Opendata, web and dolomites

BEBOP SIGNED

Binaries Escorted By Orbiting Planets

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BEBOP" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙186˙312 €
 EC max contribution 1˙186˙312 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 1˙186˙312.00

Map

 Project objective

Planets orbiting both stars of a binary system -circumbinary planets- are challenging our understanding about how planets assemble, and how their orbits subsequently evolve. Long confined to science-fiction, circumbinary planets were confirmed by the Kepler spacecraft, in one of its most spectacular, and impactful result. Despite Kepler’s insights, a lot remains unknown about these planets. Kepler also suffered from intractable biases that the BEBOP project will solve.

BEBOP will revolutionise how we detect and study circumbinary planets. Conducting a Doppler survey, we will vastly improve the efficiency of circumbinary planet detection, and remove Kepler’s biases. BEBOP will construct a clearer picture of the circumbinary planet population, and free us from the inherent vagaries, and important costs of space-funding. Thanks to the Doppler method we will study dynamical effects unique to circumbinary planets, estimate their multiplicity, and compute their true occurrence rate.

Circumbinary planets are essential objects. Binaries disturbe planet formation. Any similarity, and any difference between the population of circumbinary planets and planets orbiting single stars, will bring novel information about how planets are produced. In addition, circumbinary planets have unique orbital properties that boost their probability to experience transits. BEBOP’s detections will open the door to atmospheric studies of colder worlds than presently available.

Based on already discovered systems, and on two successful proofs-of-concept, the BEBOP team will detect 15 circumbinary gas-giants, three times more than Kepler. BEBOP will provide an unambiguous measure of the efficiency of gas-giant formation in circumbinary environments. In addition the BEBOP project comes with an ambitious programme to combine three detection methods (Doppler, transits, and astrometry) in a holistic approach that will bolster investigations into circumbinary planets, and create a lasting legacy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BEBOP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BEBOP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TRANSJIHAD (2019)

Explaining Transnational Jihad - Patterns of Escalation and Containment

Read More  

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More  

VIVA (2020)

Vaccine development against variable pathogens

Read More