Opendata, web and dolomites

CapBed SIGNED

Engineered Capillary Beds for Successful Prevascularization of Tissue Engineering Constructs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CapBed project word cloud

Explore the words cloud of the CapBed project. It provides you a very rough idea of what is the project "CapBed" about.

circulation    millions    time    capbed    axis    supply    cell    fabricate    first    anastomosed    microfluidics    flow    listed    massive    demand    ing    transplantation    survival    capillary    perfusion    vessels    network    adipose    fabrication    fast    thousands    suffering    mimic    engineer    reached    printing    cells    strategy    photoablation    patient    fluid    cutting    death    irrigate    tissues    tissue    techniques    correct    fraction    dynamic    disruptive    proposing    yielded    solution    elusive    outnumbers    donated    sheets    engineered    blood    economical    assure    beds    matrix    edge    potential    vascular    capillaries    collagen    inability    suggests    medical    3d    simultaneously    human    vastly    integrate    bed    vitro    functional    angiogenic    prevascularization    hold    technologies    laser    tools    none    people    levels    structure    populations    engineering    prevascularize    virtually    scientific    suitable    organs    stromal    intricate    innovative    irrigation    prime    body    termed    rendering    micropatterned   

Project "CapBed" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDADE DO MINHO 

Organization address
address: LARGO DO PACO
city: BRAGA
postcode: 4704 553
website: www.uminho.pt

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 1˙499˙940 €
 EC max contribution 1˙499˙940 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDADE DO MINHO PT (BRAGA) coordinator 1˙499˙940.00

Map

 Project objective

The demand for donated organs vastly outnumbers the supply, leading each year to the death of thousands of people and the suffering of millions more. Engineered tissues and organs following Tissue Engineering approaches are a possible solution to this problem. However, a prevascularization solution to irrigate complex engineered tissues and assure their survival after transplantation is currently elusive. In the human body, complex organs and tissues irrigation is achieved by a network of blood vessels termed capillary bed which suggests such a structure is needed in engineered tissues. Previous approaches to engineer capillary beds reached different levels of success but none yielded a fully functional one due to the inability in simultaneously addressing key elements such as correct angiogenic cell populations, a suitable matrix and dynamic conditions that mimic blood flow. CapBed aims at proposing a new technology to fabricate in vitro capillary beds that include a vascular axis that can be anastomosed with a patient circulation. Such capillary beds could be used as prime tools to prevascularize in vitro engineered tissues and provide fast perfusion of those after transplantation to a patient. Cutting edge techniques will be for the first time integrated in a disruptive approach to address the requirements listed above. Angiogenic cell sheets of human Adipose-derived Stromal Vascular fraction cells will provide the cell populations that integrate the capillaries and manage its intricate formation, as well as the collagen required to build the matrix that will hold the capillary beds. Innovative fabrication technologies such as 3D printing and laser photoablation will be used for the fabrication of the micropatterned matrix that will allow fluid flow through microfluidics. The resulting functional capillary beds can be used with virtually every tissue engineering strategy rendering the proposed strategy with massive economical, scientific and medical potential

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAPBED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CAPBED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More