Opendata, web and dolomites

COMPLIMB SIGNED

A computational tool to elucidate the mechanobiological regulation of limb development

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COMPLIMB" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT POLITECNICA DE CATALUNYA 

Organization address
address: CALLE JORDI GIRONA 31
city: BARCELONA
postcode: 8034
website: www.upc.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 245˙732 €
 EC max contribution 245˙732 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-05-06   to  2022-05-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT POLITECNICA DE CATALUNYA ES (BARCELONA) coordinator 245˙732.00
2    NORTHEASTERN UNIVERSITY US (BOSTON MA) partner 0.00

Map

 Project objective

Understanding the roles of motion and mechanotransduction in joint formation holds promise for the study and treatment of joint deformities in humans. Joint development has been widely studied in axolotls (Ambystoma mexicanum), as these animals regrow whole limbs throughout their life. Axolotl limbs are morphologically similar to human limbs and utilize the same biological rubrics as ontogenic growth. To draw from the therapeutic potential of these similarities, we propose to build a multi-scale multi-physics computational model for the prediction of vertebrate limb development. Our model will be based on in vivo data obtained using novel imaging techniques via NSF-funded experiments on axolotl limb growth, and will be utilised to determine the physical mechanisms of normal and pathological joint morphogenesis. To this end, in AIM 1 we will build a finite element model of growth at the tissue level to study how specific changes in limb motion regulate joint morphology. Next, in AIM 2 we will build a model of growth at the molecular level to determine how biochemical and biomechanical signalling pathways interact during normal and pathological joint development. Finally, in AIM 3 we will integrate both experimental and computational data from the different length scales into a single multi-scale mechano-biochemical model of vertebrate limb growth. A computational model that links the biomechanics and biochemistry of normal and pathological limb development at the subcellular, cellular and tissue scales is a powerful predictive tool. We envisage this tool will be utilised to optimise treatment therapies for joint deformities and better inform the preventive screening of congenital defects in humans.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMPLIMB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMPLIMB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TIPTOP (2019)

Tensoring Positive Maps on Operator Structures

Read More  

MS4Drug (2019)

An Innovative Mass Spectrometry-Based Workflow for Drug Discovery

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More