Opendata, web and dolomites

WEAVERBIRD_DEFENCE SIGNED

Unravelling an extended phenotype: sexual selection and the evolution of nest architecture in weaverbird defence against brood parasitism

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 WEAVERBIRD_DEFENCE project word cloud

Explore the words cloud of the WEAVERBIRD_DEFENCE project. It provides you a very rough idea of what is the project "WEAVERBIRD_DEFENCE" about.

interacts    computational    extended    biologists    coevolutionary    trajectory    partition    cuckoo    choose    parasite    sexually    laying    gap    male    diverse    mating    doubles    techniques    races    host    hosts    exhibit    deterrent    evolution    forms    pace    females    coevolution    interactions    defences    substantially    sexual    social    hypothesis    islands    elaborate    reciprocally    precisely    fundamental    architectural    generations    selecting    parasitism    interdisciplinary    maintains    little    contributes    combat    brood    species    tricks    outcomes    existed    parasites    gaining    parasitic    unrivalled    quantified    pressures    weaverbirds    evolutionary    cuckoos    life    opportunity    absence    textbook    analysing    preventing    nest    diederik    defence    biodiversity    closely    influences    architecture    hundred    interact    phenotypic    diversity    context    analytical    potentially    arms    intraspecific    trait    populations   

Project "WEAVERBIRD_DEFENCE" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 289˙732 €
 EC max contribution 289˙732 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-07-08   to  2022-07-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 289˙732.00
2    TRUSTEES OF PRINCETON UNIVERSITY US (PRINCETON, NJ) partner 0.00

Map

 Project objective

A major challenge for evolutionary biologists is to explain how selection maintains biodiversity. Coevolution between closely associated species contributes substantially to the diversity of life. Yet little is known about how coevolutionary pressures between different species interact with selection from intraspecific social interactions. I will address this fundamental gap in our knowledge by analysing how sexual selection interacts with the evolution of host defences against a brood parasite. Cuckoos and their hosts provide a textbook example of coevolution, by reciprocally selecting for better parasitic tricks or better host defences. I will determine whether sexual selection influences the trajectory and pace of coevolutionary change and investigate whether this is why similar coevolutionary arms races have such diverse outcomes. The weaverbirds and their brood parasite the Diederik cuckoo provide an unrivalled opportunity to test this hypothesis given that weaverbirds exhibit a sexually-selected extended phenotypic trait: an elaborate nest that the females choose before mating with the male and laying in his nest. This trait also potentially doubles as a deterrent to brood parasites, by preventing them from gaining access to the nest. Second, this trait can be precisely quantified by applying state-of-the-art computational and analytical techniques to this novel context. Third, populations of weaverbirds have been introduced to islands where they have existed in the absence of selection from brood parasitism for over one hundred generations, providing the opportunity to partition out effects of different selection pressures. With this interdisciplinary approach I will investigate whether nest architectural defences have evolved to combat brood parasitism, how the evolution of these defences interacts with sexual selection, and how the evolution of nest architecture influences the evolution of other forms of defence against brood parasites.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WEAVERBIRD_DEFENCE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WEAVERBIRD_DEFENCE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More  

DEMOS (2019)

Disfluencies and Eye MOvements during Speech: what can they reveal about language production?

Read More  

DiMaS (2019)

Retrospective genomic analyses of shortfin Mako shark (Isurus oxyrinchus) using DNA from archived jaws

Read More