Opendata, web and dolomites

Laminar-PL SIGNED

Ultra-high field imaging of perceptual learning and human brain plasticity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Laminar-PL" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 212˙933.00

Map

 Project objective

Learning and experience shape key cognitive functions of the adult human brain and support our ability to interact in complex and dynamic environments. Yet, the brain mechanisms that support our ability to learn from cluttered and inherently ambiguous sensory information and improve our perceptual decisions with training remain largely unknown. My proposal aims to investigate: (i) the neural basis of perceptual learning in the human visual cortex (ii) the neural computations that underlie perceptual learning and (iii) the brain connectivity (i.e. how different brain areas work together) that supports behavioural improvement due to training. To achieve this, I will combine behavioural paradigms measuring perceptual learning, ultra high-field 7T imaging of brain activations at the finer scale of laminar layers (i.e. across cortical depth) and state-of-the-art computational modelling. This integrated multidisciplinary approach will contribute significantly to our knowledge of how the brain optimises its capacity for adaptive behaviour through learning and experience. Further the proposed work has potential practical implications for the design of education and rehabilitation training programmes in life-long development and disease. Finally, this interdisciplinary research experience boosted by collaborations with industrial partners will benefit greatly my career development to an independent researcher in the field of computational cognitive neuroscience.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LAMINAR-PL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LAMINAR-PL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Language Use (2019)

Languages and Language Use

Read More  

qCHROMDEK (2019)

Quantitative insight into chromatin nanoscale structure: sub-nuclear organisation of oncoprotein DEK

Read More  

TRR (2019)

Exploring Tribal Representation across American Indian-produced radio in US Reservation and Urban Contexts

Read More