Opendata, web and dolomites

MUSYCA SIGNED

MUltimetallic SYstems for C-H Activation processes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MUSYCA project word cloud

Explore the words cloud of the MUSYCA project. It provides you a very rough idea of what is the project "MUSYCA" about.

positions       ideal    analytical    shilov    dinuclear    pt    respectively    natural    activation    methane    labs    modified    designed    compounds    transformation    functionalization    metal    mmos    stabilize    phenomena    oxidant    monooxygenases    cu2o    never    extremely    obtain    scaffolds    dinucleating    patterns    substituted    musyca    complexes    chelating    enzymes    consists    cu       fragments    variety    tilley    ligands    frameworks    goals    metals    showing    hydrocarbon    surrounding    bonds    underlying    containing    species    multinuclear    convertible    mechanisms    groups    stretch    multimetallic    substrates    ones    sites    aforementioned    zeolites    few    active    resemble    cooperativity    copper    entities    catalyst    cores    naphthyridine    employed    ing    corresponding    reaction    efficient    purpose    zsm    prof    governing    techniques    stoichiometric    catalytic    oxidize    reactivity    reactive    performance    interrogated    environment    interaction    time    easily    close   

Project "MUSYCA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD DE SEVILLA 

Organization address
address: CALLE S. FERNANDO 4
city: SEVILLA
postcode: 41004
website: www.us.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 245˙732 €
 EC max contribution 245˙732 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2022-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD DE SEVILLA ES (SEVILLA) coordinator 245˙732.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

MUSYCA - Multimetallic Systems for C-H Activation processes - is a project designed to obtain a better understanding of the key factors governing C-H activation phenomena in multinuclear copper-based cores present in the most efficient frameworks such as enzymes or zeolites like methane monooxygenases (MMOs) or Cu-ZSM-5, respectively. One of the main goals of the project is to obtain complexes containing Cu2O entities, which have not yet been interrogated and are reactive enough to oxidize C-H bonds. These will be employed in the stoichiometric and catalytic transformation of hydrocarbon bonds of numerous substrates, from easily convertible to extremely challenging ones, being methane the stretch goal. The reactivity patterns and the corresponding mechanisms underlying the formation of Cu-O fragments as well as those involving the formation of C-O bonds will be studied by using a wide variety of analytical techniques. To this end, robust 2,7-substituted [1,8]naphthyridine scaffolds will be employed as dinucleating ligands, since they resemble the environment surrounding dinuclear active sites in natural enzymes and they facilitate a close interaction between the metals, at the same time that the chelating groups in positions 2 and 7 help to stabilize the resulting complexes. These ligands will also be employed in the other major target of the project, which consists of the development of dinuclear Pt-Cu compounds so as to evaluate the metal cooperativity in a modified Shilov system for C-H activation. Only a few studies have been carried out on the role of copper in the Shilov-type C-H functionalization reaction, showing its great potential for improving the catalytic performance of the active species involved in the process. However, the role of Pt as active catalyst and Cu as oxidant in the same complex has never been investigated, and the aforementioned frameworks developed in the labs of Prof. Tilley are ideal for this purpose.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MUSYCA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MUSYCA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More