Opendata, web and dolomites

MUSYCA SIGNED

MUltimetallic SYstems for C-H Activation processes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MUSYCA project word cloud

Explore the words cloud of the MUSYCA project. It provides you a very rough idea of what is the project "MUSYCA" about.

goals    variety    metal    enzymes    catalytic       prof    employed    species    performance    reaction    stabilize    fragments    frameworks    efficient    catalyst    multimetallic    mechanisms    cu2o    monooxygenases    functionalization    environment    active    consists    resemble    convertible    substrates    never    multinuclear    obtain    corresponding    compounds    close    analytical    ideal    hydrocarbon    few    zsm    oxidant    aforementioned    zeolites    ones    positions       patterns    reactivity    easily    cores    designed    time    modified    activation    ing    underlying    cu    interrogated    stoichiometric    containing    labs    substituted    shilov    complexes    musyca    purpose    sites    governing    phenomena    pt    transformation    cooperativity    reactive    dinuclear    techniques    oxidize    copper    extremely    bonds    respectively    dinucleating    natural    mmos    metals    methane    stretch    naphthyridine    chelating    interaction    showing    surrounding    ligands    scaffolds    tilley    groups    entities   

Project "MUSYCA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD DE SEVILLA 

Organization address
address: CALLE S. FERNANDO 4
city: SEVILLA
postcode: 41004
website: www.us.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 245˙732 €
 EC max contribution 245˙732 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2022-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD DE SEVILLA ES (SEVILLA) coordinator 245˙732.00
2    THE REGENTS OF THE UNIVERSITY OF CALIFORNIA US (OAKLAND CA) partner 0.00

Map

 Project objective

MUSYCA - Multimetallic Systems for C-H Activation processes - is a project designed to obtain a better understanding of the key factors governing C-H activation phenomena in multinuclear copper-based cores present in the most efficient frameworks such as enzymes or zeolites like methane monooxygenases (MMOs) or Cu-ZSM-5, respectively. One of the main goals of the project is to obtain complexes containing Cu2O entities, which have not yet been interrogated and are reactive enough to oxidize C-H bonds. These will be employed in the stoichiometric and catalytic transformation of hydrocarbon bonds of numerous substrates, from easily convertible to extremely challenging ones, being methane the stretch goal. The reactivity patterns and the corresponding mechanisms underlying the formation of Cu-O fragments as well as those involving the formation of C-O bonds will be studied by using a wide variety of analytical techniques. To this end, robust 2,7-substituted [1,8]naphthyridine scaffolds will be employed as dinucleating ligands, since they resemble the environment surrounding dinuclear active sites in natural enzymes and they facilitate a close interaction between the metals, at the same time that the chelating groups in positions 2 and 7 help to stabilize the resulting complexes. These ligands will also be employed in the other major target of the project, which consists of the development of dinuclear Pt-Cu compounds so as to evaluate the metal cooperativity in a modified Shilov system for C-H activation. Only a few studies have been carried out on the role of copper in the Shilov-type C-H functionalization reaction, showing its great potential for improving the catalytic performance of the active species involved in the process. However, the role of Pt as active catalyst and Cu as oxidant in the same complex has never been investigated, and the aforementioned frameworks developed in the labs of Prof. Tilley are ideal for this purpose.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MUSYCA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MUSYCA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More  

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More