Opendata, web and dolomites

nanoCellSense SIGNED

A nanotechnology-based approach for label-free single-cell analysis of cytoplasmic proteome

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 nanoCellSense project word cloud

Explore the words cloud of the nanoCellSense project. It provides you a very rough idea of what is the project "nanoCellSense" about.

nanoprobe    membrane    calibration    extracellular    aperture    cells    immobilisation    ultra    flowing    single    cell    proteome    last    physiology    coated    performing    coating    possibilities    occurs    screening    assembled    proteomic    preservation    sicm    visualise    determined    purpose    fingerprint    microscope    functionalised    point    view    desired    cellular    framework    surface    relates    conductivity    followed    underlying    heterogeneity    possibility    opportune    morphological    self    intracellular    scanning    chemically    piercing    ion    antibodies    insights    cycle    monolayer    disease    molecules    ionic    dispersed    stems    first    wall    advantage    highlighting    occlusion    pipette    hope    tools    dynamics    fundamental    molecular    time    variation    nanopipette    molecule    came    environment    perturbative    sharp    universal    presently    label    live    pathological    free    concentrations    endowed    characterisation    mechanical    concentration    living    biology    binding    detection    detected    interaction    inner    mainly    mechanisms    protein   

Project "nanoCellSense" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2021-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 212˙933.00

Map

 Project objective

Presently there is a strong need to single-cell tools able to provide new insights into cellular proteome heterogeneity underlying dynamics, mechanisms and cell states in development and disease. Of particular interest in this framework is the possibility to have an effective intra-cellular proteomic detection in live cells. This mainly for three reasons: the first relates to preservation of higher protein concentration if the detection occurs before a molecule is dispersed in the extracellular environment; the second reason stems from the need to study in greater detail and in real time, single cell processes such as the molecular cell cycle or the molecular fingerprint in a label-free way; the last reason came up from the universal necessity to know the intracellular concentrations of many molecules involved in pathological and not-pathological cellular processes. I hope to achieve the desired goal taking advantage of a scanning ion conductivity microscope (SICM) endowed with a chemically functionalised ultra-sharp nanopipette to visualise living cells highlighting, from the morphological and mechanical point of view, specific target cells, that would be further investigated in their molecular fingerprint piercing the cell membrane and performing a molecular immobilisation screening. For this purpose, the inner surface of the nanopipette will be coated with a self-assembled monolayer of antibodies to target the protein of interest. The interaction between the protein and the coating of the nanopipette would result in a variation in the ionic current flowing through the pipette due to aperture occlusion. Effective binding of the protein to the inner wall of the pipette will be detected and followed in real time and, after opportune nanoprobe calibration, intracellular concentration determined. This low-perturbative, label-free approach for single cell proteome characterisation will open to new possibilities for fundamental research in cell biology and physiology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOCELLSENSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOCELLSENSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More