Opendata, web and dolomites

ContraVib SIGNED

Chemical Control of Vibronic Coupling for Magnetic Materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ContraVib project word cloud

Explore the words cloud of the ContraVib project. It provides you a very rough idea of what is the project "ContraVib" about.

calibre    548    magnet    calculation    frame    spectra    molecule    building    experimental    anharmonicity    molecules    track    nature    materials    catalysis    computational    qubits    performance    researcher    magnets    showed    vibronic    reputation    accounting    chemical    inter    measuring    rules    quantum    structure    phenomenon    operation    electronic    demonstrates    photosynthetic    cohort    fundamental    magnetisation    record    functional    reactions    optical    relaxation    preliminary    439    responsible    molecular    framework    independent    magnetic    career    benchmarking    physical    themes    improvements    time    2017    single    team    scientists    criteria    delocalised    outcome    flagship    modes    world    combines    outstanding    implicated    curious    catalysts    vibrations    disciplinary    localised    memories    coupling    dynamics    environmental    remarkable    influences    near    central    horizon2020    international    thought    little    it    stg    experiments    vibrational   

Project "ContraVib" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙945˙994 €
 EC max contribution 1˙945˙994 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 1˙945˙994.00

Map

 Project objective

The applicant has an outstanding track record and a growing international reputation as an independent early-career researcher. This StG proposal combines computational and experimental themes in an integrated project, and will open a new research field of vibronic control.

Coupling of molecular vibrations to electronic states (vibronic coupling) is a fundamental process that affects the outcome of chemical reactions and physical processes, but it is remarkable how little we know about it. For example, it is thought to be central in the photosynthetic process, it is implicated in catalysis, and it is crucial in the operation of single-molecule magnets and molecular qubits, but we currently have no means to control it. Recently I showed that four localised vibrations are responsible for magnetic relaxation in a high-performance single-molecule magnet (Nature, 2017, 548, 439); this exciting preliminary result demonstrates that chemical control of vibronic coupling is possible. I propose an integrated computational and experimental research programme to determine general rules for controlling this phenomenon, facilitating targeted improvements in functional molecular materials. This will be achieved by building a computational framework for calculation of vibronic coupling, accounting for anharmonicity, delocalised modes, environmental influences, and quantum effects, and supported by detailed benchmarking experiments measuring magnetisation dynamics, electronic structure and vibrational spectra of selected molecules.

A StG will provide funding to build a world-leading team to investigate chemical control of vibronic coupling. This will enable design criteria for high-performance magnetic memories and qubits within the time-frame of the project, and improved catalysts and optical materials in the near future, addressing priority areas in Horizon2020 and the Quantum Flagship, and provide a cohort of curious, high-calibre and inter-disciplinary scientists for the EU.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CONTRAVIB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CONTRAVIB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

AncientAdhesives (2019)

Ancient Adhesives - A window on prehistoric technological complexity

Read More