Opendata, web and dolomites

DISTRACT SIGNED

The Political Economy of Distraction in Digitized Denmark

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DISTRACT project word cloud

Explore the words cloud of the DISTRACT project. It provides you a very rough idea of what is the project "DISTRACT" about.

discourse    deflection    scientific    quali    politics    societal    age    environments    combining    combination    models    semi    mental    solid    quantitative    human    ethnographic    business    unseen    anthropology    retention    hypotheses    differentiate    predictive    learning    grid    acquiring    science    education    analysed    site    analytically    workplace    homogeneous    pressing    databases    techniques    world    explore    urgency    managed    off    sociology    supervised    bridging    regulation    scholars    retained    alternative    collected    technologies    communities    political    material    subject    digitized    laymen    captured    scraping    interviews    machine    economy    data    empirically    web    unmet    denmark    investigation    alluring    structured    national    dimension    competition    linked    rarr    ideal    interdisciplinary    country    sequence    social    components    smartphones    departs    tech    resource    experiments    distractions    distract    natural    tools    population    deflected    trace    public    combines    finite    economics    qualitative    scarce    manipulated    psychology    capturing    layers    distinguish    distraction   

Project "DISTRACT" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 2˙499˙315 €
 EC max contribution 2˙499˙315 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 2˙476˙790.00
2    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) participant 22˙525.00

Map

 Project objective

Bridging anthropology, sociology, economics, psychology, political science, and data science, DISTRACT combines advanced data science tools and established social science analysis to explore a pressing challenge: the ever more alluring distractions of human attention in the age of smartphones and other digitized technologies. DISTRACT departs from five linked hypotheses: 1) The attention is commonly (by scholars and laymen) seen as finite; ⇒ (2) As such, it is a scarce resource that is subject to competition and regulation; ⇒ 3) This is not new but it is acquiring unseen urgency in the current data economy; ⇒ 4) An interdisciplinary social data science approach allows for solid and novel investigation of this unmet scientific and societal need; and ⇒ 5) As the world’s most digitized country (and homogeneous population and state-of-the-art public databases), Denmark is an ideal site to study this political economy of distraction. Combining qualitative and quantitative data from four case studies, DISTRACT thus aims to trace and analyse the mental, social and material techniques by which attention is captured, retained and deflected in digitized Denmark. Analytically, we distinguish between three layers in which attention is managed and manipulated: a “mental”, “social” and “material” dimension. We also differentiate between three components of given attention/distraction sequence: the ‘”capturing”, “retention” and “deflection” phase. Empirically, case-studies shall be carried out of (a) national politics, (b) the tech business, (c) “off-the-grid” alternative communities, and (d) education and workplace environments. Data shall be collected, integrated and analysed via a combination of 1) qualitative methods, including ethnographic fieldwork and semi-structured interviews and discourse analysis; (2) quantitative methods, including natural experiments and predictive models; and (3) quali-quantitative methods including web scraping and supervised machine learning.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISTRACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISTRACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More