Opendata, web and dolomites

NQTPS

Nonequilibrium Quantum Transport, Probes and Simulations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NQTPS" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 174˙806 €
 EC max contribution 174˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-12-02   to  2021-12-01

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 174˙806.00

Map

 Project objective

Nonequilibrium Quantum Transport, Probes and Simulations is an ambitious research proposal aimed at designing both theoretical methods and practical schemes to describe and control nonequilibrium many-body quantum systems. With a combination open-quantum-systems, tensor networks and non-equilibrium Green’s functions NQTPS will develop methods to model nonequilibrium quantum systems with applications to quantum transport, weakly disturbing probes and Simulations. Specifically we aim to (1) Control transport between many-body systems designing small quantum rectifiers that operate at their interface. The rectifier is an asymmetrical and non-linear structure that breaks reciprocity. This novel development will be done beyond the main-stream phenomenological approach to dissipative systems which fails to give correct results specially in the presence of structured baths. (2) Extend scalable Matrix-Product-State techniques to model 1-D many-body open systems beyond the local Lindblad approach. Once a method capable of describing open-many-body-systems is stablished we will use it to characterize emergent transport (ballistic, diffusive, anomalous, insulating). (3) Design weak-coupling schemes to small probes for measuring fine features of complex quantum systems. We will propose probing of spacial and time correlations while leaving the many-body system almost unperturbed. (4) Model the dynamics of two-dimensional driven dissipative systems, focussing on adiabatic evolution subject to external noise. These models describe the fundamental structure on which companies are investing on for prototype quantum simulators and computers. We aim to address driven dissipative phase transitions and analyze their impact for adiabatic quantum simulation and quantum annealers. We will develop a tensor-network-oriented method for addressing the many-body case merging Tree-tensor-networks with the time dependent-variational-principle.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NQTPS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NQTPS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More  

LEANOR (2019)

Detecting Low-Energy Astrophysical Neutrinos with KM3NeT/ORCA: the Transient Neutrino Sky at the GeV Scale

Read More