Opendata, web and dolomites

HYDROTRONICS SIGNED

Hydrodynamic electronics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HYDROTRONICS project word cloud

Explore the words cloud of the HYDROTRONICS project. It provides you a very rough idea of what is the project "HYDROTRONICS" about.

dominated    charge    describe    edge    closer    groups    exposing    cutting    electric    conversion    geometry    uncovered    technologies    fertile    electronic    phenomena    hydrodynamic    environment    combining    software    technological    electrons    electron    dimensional    manufacturing    energy    computational    fine    powerful    framework    advances    graphene    paths    course    storage    settings    electronics    samples    physical    progress    modern    ideas    turbulent    laws    rapid    network    collisions    ultra    hydrodynamics    tuned    interacting    immense    superballistic    parts    yield    perspective    materials    material    flourish    pure    emergence    biggest    experimental    transport    physics    accessible    fabrication    explosion    macroscopic    obey    practitioners    local    clean    led    routine    theoretical    itself    last    easily    manifests    area    microscopic    stage    integration    hydrotronics    resolve    synergy    nanoelectronics   

Project "HYDROTRONICS" data sheet

The following table provides information about the project.

Coordinator
KARLSRUHER INSTITUT FUER TECHNOLOGIE 

Organization address
address: KAISERSTRASSE 12
city: KARLSRUHE
postcode: 76131
website: www.kit.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 524˙400 €
 EC max contribution 506˙000 € (96%)
 Programme 1. H2020-EU.1.3.3. (Stimulating innovation by means of cross-fertilisation of knowledge)
 Code Call H2020-MSCA-RISE-2019
 Funding Scheme MSCA-RISE
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2023-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KARLSRUHER INSTITUT FUER TECHNOLOGIE DE (KARLSRUHE) coordinator 110˙400.00
2    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) participant 105˙800.00
3    STICHTING KATHOLIEKE UNIVERSITEIT NL (NIJMEGEN) participant 96˙600.00
4    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) participant 96˙600.00
5    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) participant 92˙000.00
6    WOLFRAM RESEARCH EUROPE LIMITED UK (LONG HANBOROUGH) participant 4˙600.00
7    LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COLLEGE US (BATON ROUGE) partner 0.00
8    UNIVERSIDAD DE CHILE CL (SANTIAGO) partner 0.00

Map

 Project objective

Advances in fabrication of ultra-pure low-dimensional materials have led in recent years to the emergence of a new area of research -- hydrodynamic electronics. Modern technologies allow for routine manufacturing of ultra-clean samples where observable physical properties are dominated by electron-electron collisions. Electrons in such systems obey the laws of hydrodynamics, which manifests itself in non-local, superballistic, and turbulent transport of energy and electric charge. Following the immense success of graphene research, many novel two-dimensional materials are currently being investigated aiming at potential applications in nanoelectronics, as well as energy conversion and storage. Last years have seen an explosion of interest, both experimental and theoretical, in the hydrodynamic effects in interacting electron systems in ultra-pure materials. The principle aims of HYDROTRONICS are (i) to build a framework to describe hydrodynamic charge and energy transport fine-tuned to the material properties and sample geometry, and (ii) to investigate the physics of novel materials that can be uncovered by transport measurements. Combining the microscopic and macroscopic methods to interacting electronic systems will allow for a unique perspective and yield a powerful approach to transport phenomena that can be easily adapted to new materials and experimental settings, as they become accessible in the course of rapid technological progress. Strong collaboration between the groups involved in the project and its overall synergy will allow novel ideas to flourish, promoting a fertile environment in which early-stage researchers can develop their own paths and resolve the biggest issues in the field. Another important goal is a closer integration between the experimental, theoretical, and computational (software development) parts of the network, which will be an important element exposing practitioners in each area to cutting edge progress in the others.

 Publications

year authors and title journal last update
List of publications.
2019 Egor I. Kiselev, Jörg Schmalian
Lévy Flights and Hydrodynamic Superdiffusion on the Dirac Cone of Graphene
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.123.195302
Physical Review Letters 123/19 2020-02-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYDROTRONICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYDROTRONICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.3.)

ENDORSE (2018)

Safe, Efficient and Integrated Indoor Robotic Fleet for Logistic Applications in Healthcare and Commercial Spaces

Read More  

VIDEC (2020)

Visualizing Death Inducing Protein Complexes

Read More  

SmartShip (2019)

A data analytics, decision support and circular economy – based multi-layer optimisation platform towards a holistic energy efficiency, fuel consumption and emissions management of vessels

Read More