Opendata, web and dolomites

BLACKJACK SIGNED

Fast Monte Carlo integration with repulsive processes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BLACKJACK project word cloud

Explore the words cloud of the BLACKJACK project. It provides you a very rough idea of what is the project "BLACKJACK" about.

dynamics    monte    hours    machine    fitting    model    repulsive    millions    simulations    algorithms    limited    determinantal    nodes    parallelization    inference    colliding    hammer    repulsiveness    explicitly    ecologists    scientific    intricate    learners    prototypal    schemes    computing    experimental    computationally    tool    biology    box    qualitatively    turn    filling    volumes    markov    expensive    architectures    communication    independent    estimation    cheap    processers    carlo    evaluations    slow    fast    biologists    variance    hardware    models    ecosystems    signal    statistical    chain    cells    serial    meanwhile    convergence    statisticians    minutes    takes    tools    evaluation    astrophysicists    algorithm    galaxies    poorly    physics    electrons    mathematical    introduce    ubiquitous    unlock    copies    instance    rate    routine    particle    proved    computer    parallel    efficient    single    blackjack    first    point    sciences    running    computational    quadrature    evolution    world    data   

Project "BLACKJACK" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙489˙000 €
 EC max contribution 1˙489˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙489˙000.00

Map

 Project objective

Expensive computer simulations have become routine in the experimental sciences. Astrophysicists design complex models of the evolution of galaxies, biologists develop intricate models of cells, ecologists model the dynamics of ecosystems at a world scale. A single evaluation of such complex models takes minutes or hours on today's hardware. On the other hand, fitting these models to data can require millions of serial evaluations. Monte Carlo methods, for example, are ubiquitous in statistical inference for scientific data, but they scale poorly with the number of model evaluations. Meanwhile, the use of parallel computing architectures for Monte Carlo is often limited to running independent copies of the same algorithm. Blackjack will provide Monte Carlo methods that unlock inference for expensive models in biology by directly addressing the slow rate of convergence and the parallelization of Monte Carlo methods.

The key to take down the Monte Carlo rate is to introduce repulsiveness between the quadrature nodes. For instance, we recently proved that determinantal point processes, a prototypal repulsive distribution introduced in physics, improve the Monte Carlo convergence rate, just like electrons lead to low-variance estimation of volumes by efficiently filling a box. Such results lead to open computational and statistical challenges. We propose to solve these challenges, and make repulsive processes a novel tool for applied statisticians, signal processers, and machine learners.

Still with repulsiveness as a hammer, we will design the first parallel Markov chain Monte Carlo algorithms that are qualitatively different from running independent copies of known algorithms, i.e., that explicitly improve the order of convergence of the single-machine algorithm. To this end, we will turn mathematical tools such as repulsive particle systems and non-colliding processes into computationally cheap, communication-efficient Monte Carlo schemes with fast convergence.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BLACKJACK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BLACKJACK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TRUST (2018)

Truth and Semantics

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

LO-KMOF (2019)

Vapour-deposited metal-organic frameworks as high-performance gap-filling dielectrics for nanoelectronics

Read More