Opendata, web and dolomites

BLACKJACK SIGNED

Fast Monte Carlo integration with repulsive processes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BLACKJACK project word cloud

Explore the words cloud of the BLACKJACK project. It provides you a very rough idea of what is the project "BLACKJACK" about.

signal    estimation    particle    single    intricate    experimental    carlo    parallel    hammer    prototypal    learners    repulsive    models    parallelization    box    machine    tools    ubiquitous    takes    computationally    biologists    processers    convergence    astrophysicists    meanwhile    cheap    sciences    nodes    markov    qualitatively    point    inference    repulsiveness    model    cells    communication    electrons    statisticians    unlock    variance    tool    ecologists    blackjack    physics    ecosystems    introduce    filling    algorithms    biology    data    limited    first    computational    evaluations    volumes    evolution    determinantal    monte    running    simulations    expensive    world    scientific    evaluation    instance    proved    fast    hardware    galaxies    routine    turn    fitting    colliding    copies    statistical    hours    rate    independent    efficient    schemes    mathematical    minutes    slow    serial    architectures    millions    poorly    computing    dynamics    algorithm    quadrature    explicitly    chain    computer   

Project "BLACKJACK" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙489˙000 €
 EC max contribution 1˙489˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙489˙000.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Expensive computer simulations have become routine in the experimental sciences. Astrophysicists design complex models of the evolution of galaxies, biologists develop intricate models of cells, ecologists model the dynamics of ecosystems at a world scale. A single evaluation of such complex models takes minutes or hours on today's hardware. On the other hand, fitting these models to data can require millions of serial evaluations. Monte Carlo methods, for example, are ubiquitous in statistical inference for scientific data, but they scale poorly with the number of model evaluations. Meanwhile, the use of parallel computing architectures for Monte Carlo is often limited to running independent copies of the same algorithm. Blackjack will provide Monte Carlo methods that unlock inference for expensive models in biology by directly addressing the slow rate of convergence and the parallelization of Monte Carlo methods.

The key to take down the Monte Carlo rate is to introduce repulsiveness between the quadrature nodes. For instance, we recently proved that determinantal point processes, a prototypal repulsive distribution introduced in physics, improve the Monte Carlo convergence rate, just like electrons lead to low-variance estimation of volumes by efficiently filling a box. Such results lead to open computational and statistical challenges. We propose to solve these challenges, and make repulsive processes a novel tool for applied statisticians, signal processers, and machine learners.

Still with repulsiveness as a hammer, we will design the first parallel Markov chain Monte Carlo algorithms that are qualitatively different from running independent copies of known algorithms, i.e., that explicitly improve the order of convergence of the single-machine algorithm. To this end, we will turn mathematical tools such as repulsive particle systems and non-colliding processes into computationally cheap, communication-efficient Monte Carlo schemes with fast convergence.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BLACKJACK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BLACKJACK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

CellularLogistics (2019)

Cellular Logistics: Form, Formation and Function of the Neuronal Microtubule Cytoskeleton

Read More