Opendata, web and dolomites

HyperK SIGNED

Modern Aspects of Geometry: Categories, Cycles and Cohomology of Hyperkähler Varieties

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HyperK project word cloud

Explore the words cloud of the HyperK project. It provides you a very rough idea of what is the project "HyperK" about.

realm    transcendental    interplay    secrets    discovery    gain    collaborators    k3    modern    subvarieties    mathematicians    hyperk    progress    precision    categories    small    picture    cycles    splitting    unlock    effort    bends    ranges    dimensional    draw    physicists    intrigued    fascinating    beautifully    cohomology    hodge    geometries    grothendieck    tested    mathematics    einstein    landscape    concerted    place    degrees    clude    phenomena    geometry    expertise    structures    concerning    curved    branches    unifying    area    equations    covered    category    surfaces    branch    matches    mathematic    algebraic    time    gravity    distinctive    symmetric    pis    central    moduli    varieties    hler    cohomological    form    conjecture    deep    proving    geometric    solutions    describe    theory    world    curvature    profound    spaces    secures    special    super    combines    hyperka    space    conjectures    combination    invariants    ultimate    background    students    exhibits    fundamental    clear    shaped    classifying   

Project "HyperK" data sheet

The following table provides information about the project.

Coordinator
RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN 

Organization address
address: REGINA PACIS WEG 3
city: BONN
postcode: 53113
website: www.uni-bonn.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 8˙529˙641 €
 EC max contribution 8˙529˙641 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-SyG
 Funding Scheme ERC-SyG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2026-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN DE (BONN) coordinator 3˙931˙798.00
2    UNIVERSITE DE PARIS FR (PARIS) participant 1˙781˙750.00
3    UNIVERSITE PARIS-SACLAY FR (SAINT AUBIN) participant 1˙764˙593.00
4    COLLEGE DE FRANCE FR (PARIS) participant 1˙051˙500.00
5    UNIVERSITE PARIS DIDEROT - PARIS 7 FR (PARIS) participant 0.00
6    UNIVERSITE PARIS-SUD FR (ORSAY CEDEX) participant 0.00

Map

 Project objective

The space around us is curved. Ever since Einstein’s discovery that gravity bends space and time, mathematicians and physicists have been intrigued by the geometry of curvature. Among all geometries, the hyperkähler world exhibits some of the most fascinating phenomena. The special form of their curvature makes these spaces beautifully (super-)symmetric and the interplay of algebraic and transcendental aspects secures them a special place in modern mathematics. Algebraic geometry, the study of solutions of algebraic equations, is the area of mathematics that can unlock the secrets in this realm of geometry and that can describe its central features with great precision. HyperK combines background and expertise in different branches of mathematics to gain a deep understanding of hyperkähler geometry. A number of central conjectures that have shaped algebraic geometry as a branch of modern mathematics since Grothendieck’s fundamental work shall be tested for this particularly rich geometry. The expertise covered by the four PIs ranges from category theory over the theory of algebraic cycles to cohomology of varieties. Any profound advance in hyperkähler geometry requires a combination of all three approaches. The concerted effort of the PIs, their collaborators, and their students will lead to major progress in this area. The goal of HyperK is to advance hyperkähler geometry to a level that matches the well established theory of K3 surfaces, the two-dimensional case of hyperkähler geometry. We aim at proving fundamental results concerning cycles, at classifying Hodge structures and cohomological invariants, and at unifying geometry and derived categories. Specific topics in- clude the splitting conjecture, the Hodge conjecture in small degrees, moduli spaces in derived categories, geometric K3 categories, and special subvarieties. The ultimate goal of HyperK is to draw a clear and distinctive picture of the hyperkähler landscape as a central part of mathematic

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYPERK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYPERK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

SmartForests (2020)

Smart Forests: Transforming Environments into Social-Political Technologies

Read More  

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More